L(s) = 1 | + (0.385 − 0.667i)5-s + (−2.20 + 1.46i)7-s + (−4.68 + 2.70i)11-s − 5.28i·13-s + (−2.85 − 4.94i)17-s + (0.535 + 0.309i)19-s + (−5.83 − 3.37i)23-s + (2.20 + 3.81i)25-s − 8.07i·29-s + (0.502 − 0.290i)31-s + (0.129 + 2.03i)35-s + (−4.53 + 7.86i)37-s − 8.59·41-s + 3.40·43-s + (0.385 − 0.667i)47-s + ⋯ |
L(s) = 1 | + (0.172 − 0.298i)5-s + (−0.832 + 0.553i)7-s + (−1.41 + 0.814i)11-s − 1.46i·13-s + (−0.692 − 1.19i)17-s + (0.122 + 0.0709i)19-s + (−1.21 − 0.702i)23-s + (0.440 + 0.763i)25-s − 1.49i·29-s + (0.0902 − 0.0521i)31-s + (0.0218 + 0.344i)35-s + (−0.746 + 1.29i)37-s − 1.34·41-s + 0.519·43-s + (0.0562 − 0.0973i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0780859 - 0.333328i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0780859 - 0.333328i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.20 - 1.46i)T \) |
good | 5 | \( 1 + (-0.385 + 0.667i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (4.68 - 2.70i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.28iT - 13T^{2} \) |
| 17 | \( 1 + (2.85 + 4.94i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.535 - 0.309i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.83 + 3.37i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 8.07iT - 29T^{2} \) |
| 31 | \( 1 + (-0.502 + 0.290i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.53 - 7.86i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 8.59T + 41T^{2} \) |
| 43 | \( 1 - 3.40T + 43T^{2} \) |
| 47 | \( 1 + (-0.385 + 0.667i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.63 - 3.83i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.89 - 11.9i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.57 + 2.06i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.77 + 11.7i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.25iT - 71T^{2} \) |
| 73 | \( 1 + (-1.96 + 1.13i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.03 + 6.98i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.85T + 83T^{2} \) |
| 89 | \( 1 + (-2.59 + 4.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 14.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05807091119841965923569841832, −9.233229119391778244488980011620, −8.207928381083100783716538323128, −7.49460076126499852093446413081, −6.37452005231380049421652889744, −5.43438640681381670575602146560, −4.71625496355985467840121586742, −3.13198235629866008590152670894, −2.33133079289665050853339521607, −0.15856062597472183592407514565,
1.97200994478841536384863448490, 3.26028337373767865831689103333, 4.18767963520195615375072260114, 5.47587736736022089514632680894, 6.42292749228436096238805556531, 7.08638234319422461221174707947, 8.203576115252033017944527130696, 8.981630449226691662173799004270, 10.03474416875388187977273370425, 10.60788392199137192566493647690