L(s) = 1 | + (−1.26 + 2.18i)5-s + (0.527 − 2.59i)7-s + (−0.687 − 1.18i)11-s + (−2.80 − 4.84i)13-s + (2.69 − 4.66i)17-s + (2.44 + 4.23i)19-s + (2.08 − 3.61i)23-s + (−0.675 − 1.17i)25-s + (1.56 − 2.71i)29-s + 4.80·31-s + (4.99 + 4.41i)35-s + (−2.69 − 4.67i)37-s + (3.02 + 5.24i)41-s + (2.44 − 4.23i)43-s + 5.65·47-s + ⋯ |
L(s) = 1 | + (−0.563 + 0.976i)5-s + (0.199 − 0.979i)7-s + (−0.207 − 0.358i)11-s + (−0.776 − 1.34i)13-s + (0.653 − 1.13i)17-s + (0.561 + 0.972i)19-s + (0.435 − 0.753i)23-s + (−0.135 − 0.234i)25-s + (0.291 − 0.504i)29-s + 0.862·31-s + (0.844 + 0.746i)35-s + (−0.443 − 0.768i)37-s + (0.473 + 0.819i)41-s + (0.373 − 0.646i)43-s + 0.824·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.483 + 0.875i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.483 + 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03917 - 0.613494i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03917 - 0.613494i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.527 + 2.59i)T \) |
good | 5 | \( 1 + (1.26 - 2.18i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.687 + 1.18i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.80 + 4.84i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.69 + 4.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.44 - 4.23i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.08 + 3.61i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.56 + 2.71i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.80T + 31T^{2} \) |
| 37 | \( 1 + (2.69 + 4.67i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.02 - 5.24i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.44 + 4.23i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 5.65T + 47T^{2} \) |
| 53 | \( 1 + (-7.00 + 12.1i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 14.2T + 59T^{2} \) |
| 61 | \( 1 + 6.85T + 61T^{2} \) |
| 67 | \( 1 + 8.11T + 67T^{2} \) |
| 71 | \( 1 - 2.25T + 71T^{2} \) |
| 73 | \( 1 + (-3.51 + 6.08i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 2.75T + 79T^{2} \) |
| 83 | \( 1 + (7.48 - 12.9i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (2.75 + 4.77i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.894 + 1.54i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38824230084199742426151915721, −9.599640836995039086354579597449, −8.134261185080992416886988141887, −7.58671935295946533535218974831, −6.97380235744665588204675140332, −5.74756734556457499122125635523, −4.71663053334615776453273211671, −3.48278561281578931976143794825, −2.77796192102531242820933777191, −0.66359362749155985824201455230,
1.46476705718596269516980563428, 2.82627861936504235036103451594, 4.33409702507318894158703511449, 4.94065159060702897985244896814, 5.94836754944573727633166031204, 7.15110318051760981119911282722, 7.983396960555893577394250717221, 8.958811636507892060462503279855, 9.290992332486503599486937984542, 10.47645650035599529694698501505