L(s) = 1 | + 3·5-s + (2 − 1.73i)7-s − 5.19i·11-s − 3.46i·13-s − 6·17-s − 1.73i·19-s + 5.19i·23-s + 4·25-s + 10.3i·29-s − 5.19i·31-s + (6 − 5.19i)35-s + 37-s − 3·41-s + 10·43-s − 6·47-s + ⋯ |
L(s) = 1 | + 1.34·5-s + (0.755 − 0.654i)7-s − 1.56i·11-s − 0.960i·13-s − 1.45·17-s − 0.397i·19-s + 1.08i·23-s + 0.800·25-s + 1.92i·29-s − 0.933i·31-s + (1.01 − 0.878i)35-s + 0.164·37-s − 0.468·41-s + 1.52·43-s − 0.875·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 + 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.79460 - 0.819863i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79460 - 0.819863i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
good | 5 | \( 1 - 3T + 5T^{2} \) |
| 11 | \( 1 + 5.19iT - 11T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 + 1.73iT - 19T^{2} \) |
| 23 | \( 1 - 5.19iT - 23T^{2} \) |
| 29 | \( 1 - 10.3iT - 29T^{2} \) |
| 31 | \( 1 + 5.19iT - 31T^{2} \) |
| 37 | \( 1 - T + 37T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - 10T + 43T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 - 6T + 59T^{2} \) |
| 61 | \( 1 - 13.8iT - 61T^{2} \) |
| 67 | \( 1 - 2T + 67T^{2} \) |
| 71 | \( 1 - 5.19iT - 71T^{2} \) |
| 73 | \( 1 - 3.46iT - 73T^{2} \) |
| 79 | \( 1 - 14T + 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 - 9T + 89T^{2} \) |
| 97 | \( 1 - 6.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42496749245610712327378364349, −9.284623571176793489351541801442, −8.660084583323062691237669680778, −7.67606099440537164763174787528, −6.60749595961290575475892651466, −5.71135370211101716666465681475, −5.03837005126779033082726554224, −3.64674112267195386288722672565, −2.40930699420365285803489465925, −1.07219492169125979655317125175,
1.99298582318335137164776507068, 2.21162985299984596235187084605, 4.36652821479421606476640961845, 4.95729342157511820235378866601, 6.16478919125706584032999629009, 6.74501712182444563765675206637, 7.952537059707057697467903010867, 8.990673177544833188893339377022, 9.528051441513835824394691167351, 10.32568702344136244060203219218