Properties

Label 2-756-108.59-c1-0-22
Degree $2$
Conductor $756$
Sign $0.905 + 0.425i$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.15 − 0.811i)2-s + (−1.71 + 0.216i)3-s + (0.681 + 1.88i)4-s + (0.0372 + 0.102i)5-s + (2.16 + 1.14i)6-s + (−0.984 + 0.173i)7-s + (0.737 − 2.73i)8-s + (2.90 − 0.744i)9-s + (0.0399 − 0.148i)10-s + (1.44 + 0.526i)11-s + (−1.57 − 3.08i)12-s + (−3.59 − 3.01i)13-s + (1.28 + 0.598i)14-s + (−0.0861 − 0.167i)15-s + (−3.07 + 2.56i)16-s + (1.89 + 1.09i)17-s + ⋯
L(s)  = 1  + (−0.818 − 0.574i)2-s + (−0.992 + 0.125i)3-s + (0.340 + 0.940i)4-s + (0.0166 + 0.0457i)5-s + (0.884 + 0.467i)6-s + (−0.372 + 0.0656i)7-s + (0.260 − 0.965i)8-s + (0.968 − 0.248i)9-s + (0.0126 − 0.0470i)10-s + (0.436 + 0.158i)11-s + (−0.455 − 0.890i)12-s + (−0.996 − 0.836i)13-s + (0.342 + 0.159i)14-s + (−0.0222 − 0.0433i)15-s + (−0.767 + 0.640i)16-s + (0.459 + 0.265i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.905 + 0.425i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.905 + 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $0.905 + 0.425i$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (491, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ 0.905 + 0.425i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.620137 - 0.138468i\)
\(L(\frac12)\) \(\approx\) \(0.620137 - 0.138468i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.15 + 0.811i)T \)
3 \( 1 + (1.71 - 0.216i)T \)
7 \( 1 + (0.984 - 0.173i)T \)
good5 \( 1 + (-0.0372 - 0.102i)T + (-3.83 + 3.21i)T^{2} \)
11 \( 1 + (-1.44 - 0.526i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (3.59 + 3.01i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (-1.89 - 1.09i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (5.71 - 3.30i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.158 + 0.901i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (-5.10 - 6.08i)T + (-5.03 + 28.5i)T^{2} \)
31 \( 1 + (-1.99 - 0.352i)T + (29.1 + 10.6i)T^{2} \)
37 \( 1 + (-2.92 + 5.06i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-6.36 + 7.59i)T + (-7.11 - 40.3i)T^{2} \)
43 \( 1 + (0.354 - 0.973i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (-0.676 - 3.83i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 - 5.33iT - 53T^{2} \)
59 \( 1 + (-13.1 + 4.78i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-1.31 - 7.47i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-4.10 + 4.89i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-4.10 + 7.10i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (2.00 + 3.47i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-8.81 - 10.5i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-9.78 + 8.21i)T + (14.4 - 81.7i)T^{2} \)
89 \( 1 + (2.13 - 1.22i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-13.3 - 4.84i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46803658726055227492212919248, −9.689383517885800238411144801017, −8.744047743870298376629132051604, −7.72417904897728561211313076380, −6.83796222490424095311053875178, −6.04378574188321133105404148886, −4.76101824238601058210064482812, −3.71456722156427423154064644351, −2.35442843060388605533665358928, −0.76812381187979502161386958615, 0.791389950537510540593941457862, 2.33532374848747394045383179629, 4.38469508277427973871625989991, 5.18292309238998293852124830621, 6.39713315095791585294546290779, 6.71754753530695148479035657537, 7.66940394118328992133843025288, 8.740070930518128093219703146945, 9.695185586154506491530093125671, 10.15536676745147400014059867739

Graph of the $Z$-function along the critical line