L(s) = 1 | + (−1.04 + 0.948i)2-s + (0.199 − 1.99i)4-s + (−0.479 − 0.277i)5-s + (2.45 − 0.976i)7-s + (1.67 + 2.27i)8-s + (0.766 − 0.164i)10-s + (−2.96 − 5.14i)11-s + 3.20·13-s + (−1.65 + 3.35i)14-s + (−3.92 − 0.793i)16-s + (−2.48 + 1.43i)17-s + (−3.43 − 1.98i)19-s + (−0.646 + 0.899i)20-s + (7.99 + 2.57i)22-s + (0.145 − 0.251i)23-s + ⋯ |
L(s) = 1 | + (−0.741 + 0.670i)2-s + (0.0996 − 0.995i)4-s + (−0.214 − 0.123i)5-s + (0.929 − 0.369i)7-s + (0.593 + 0.804i)8-s + (0.242 − 0.0521i)10-s + (−0.895 − 1.55i)11-s + 0.888·13-s + (−0.441 + 0.897i)14-s + (−0.980 − 0.198i)16-s + (−0.602 + 0.348i)17-s + (−0.788 − 0.455i)19-s + (−0.144 + 0.201i)20-s + (1.70 + 0.549i)22-s + (0.0303 − 0.0525i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.335 + 0.942i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.335 + 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.655660 - 0.462704i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.655660 - 0.462704i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.04 - 0.948i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.45 + 0.976i)T \) |
good | 5 | \( 1 + (0.479 + 0.277i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.96 + 5.14i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.20T + 13T^{2} \) |
| 17 | \( 1 + (2.48 - 1.43i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.43 + 1.98i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.145 + 0.251i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.13iT - 29T^{2} \) |
| 31 | \( 1 + (5.96 - 3.44i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.20 + 2.08i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.27iT - 41T^{2} \) |
| 43 | \( 1 + 8.31iT - 43T^{2} \) |
| 47 | \( 1 + (-6.19 + 10.7i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.21 - 2.43i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.24 + 10.8i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.305 - 0.529i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.70 + 2.13i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.00T + 71T^{2} \) |
| 73 | \( 1 + (-6.28 - 10.8i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.20 + 3.00i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.675T + 83T^{2} \) |
| 89 | \( 1 + (-11.1 - 6.44i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.00T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35440943588813788939540507518, −8.781102916079255364319129012322, −8.594903505562618980274556145562, −7.78782007494517292735549417278, −6.78416681153267185366025436089, −5.81724426535426084122016071997, −5.02469035041487472379153265225, −3.78280583745025736268239044355, −2.04681099376066692625816759810, −0.52130931027752848336143411366,
1.65868855025447165446303680379, 2.54309127155355921148498707379, 4.02471774985429535611874852124, 4.83356755282194862612554077003, 6.23869944123343760171877204741, 7.59775318688346770416726799993, 7.82265123797479284595758951952, 8.935317736826896375685068771054, 9.640312173329714379813535945665, 10.63605226091132098728324010806