L(s) = 1 | + (−1.38 − 0.290i)2-s + (1.83 + 0.803i)4-s + (2.75 + 1.59i)5-s + (−0.944 + 2.47i)7-s + (−2.30 − 1.64i)8-s + (−3.35 − 3.00i)10-s + (−1.24 − 2.16i)11-s + 6.61·13-s + (2.02 − 3.14i)14-s + (2.70 + 2.94i)16-s + (−2.67 + 1.54i)17-s + (4.40 + 2.54i)19-s + (3.77 + 5.13i)20-s + (1.10 + 3.35i)22-s + (2.53 − 4.39i)23-s + ⋯ |
L(s) = 1 | + (−0.978 − 0.205i)2-s + (0.915 + 0.401i)4-s + (1.23 + 0.712i)5-s + (−0.356 + 0.934i)7-s + (−0.813 − 0.581i)8-s + (−1.06 − 0.950i)10-s + (−0.376 − 0.651i)11-s + 1.83·13-s + (0.541 − 0.841i)14-s + (0.677 + 0.735i)16-s + (−0.649 + 0.374i)17-s + (1.01 + 0.583i)19-s + (0.843 + 1.14i)20-s + (0.234 + 0.715i)22-s + (0.529 − 0.916i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.655 - 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.655 - 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12023 + 0.510910i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12023 + 0.510910i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 + 0.290i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.944 - 2.47i)T \) |
good | 5 | \( 1 + (-2.75 - 1.59i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.24 + 2.16i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 6.61T + 13T^{2} \) |
| 17 | \( 1 + (2.67 - 1.54i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.40 - 2.54i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.53 + 4.39i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 1.59iT - 29T^{2} \) |
| 31 | \( 1 + (7.31 - 4.22i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.357 - 0.619i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 12.2iT - 41T^{2} \) |
| 43 | \( 1 + 3.72iT - 43T^{2} \) |
| 47 | \( 1 + (2.51 - 4.35i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.21 + 4.16i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.36 - 9.29i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.997 + 1.72i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.00277 - 0.00160i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.4T + 71T^{2} \) |
| 73 | \( 1 + (-0.957 - 1.65i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.11 - 3.52i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.93T + 83T^{2} \) |
| 89 | \( 1 + (-0.482 - 0.278i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 0.127T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46202240987714404631725597158, −9.569553122435831387628409966072, −8.831072676258765914037782453930, −8.241777604977110366587061699626, −6.84810611377577552252353384630, −6.14263812303638693839141812276, −5.62578283613791595476424119198, −3.45709807549587608663047495217, −2.64289517178814793044618711399, −1.48633066177397697851776864827,
0.951578378545442444932571706260, 2.00065862674740117335642566580, 3.56001773462094044052651420844, 5.14247673414405268284249176081, 5.90440627030908151098324707479, 6.89303436090117390677666971047, 7.59495451267344691565799339318, 8.894369079796567653796300946561, 9.230100956270440955161134748002, 10.07195661638257625277269277407