L(s) = 1 | + (−1.15 + 0.818i)2-s + (0.660 − 1.88i)4-s + 2.16i·5-s + (−1.94 − 1.79i)7-s + (0.782 + 2.71i)8-s + (−1.76 − 2.49i)10-s + 0.414i·11-s + 2.36i·13-s + (3.71 + 0.470i)14-s + (−3.12 − 2.49i)16-s − 0.695i·17-s − 5.21·19-s + (4.08 + 1.42i)20-s + (−0.339 − 0.478i)22-s − 0.414i·23-s + ⋯ |
L(s) = 1 | + (−0.815 + 0.578i)2-s + (0.330 − 0.943i)4-s + 0.967i·5-s + (−0.736 − 0.676i)7-s + (0.276 + 0.960i)8-s + (−0.559 − 0.788i)10-s + 0.124i·11-s + 0.656i·13-s + (0.992 + 0.125i)14-s + (−0.781 − 0.623i)16-s − 0.168i·17-s − 1.19·19-s + (0.912 + 0.319i)20-s + (−0.0723 − 0.101i)22-s − 0.0864i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 + 0.471i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0395915 - 0.158027i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0395915 - 0.158027i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.15 - 0.818i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.94 + 1.79i)T \) |
good | 5 | \( 1 - 2.16iT - 5T^{2} \) |
| 11 | \( 1 - 0.414iT - 11T^{2} \) |
| 13 | \( 1 - 2.36iT - 13T^{2} \) |
| 17 | \( 1 + 0.695iT - 17T^{2} \) |
| 19 | \( 1 + 5.21T + 19T^{2} \) |
| 23 | \( 1 + 0.414iT - 23T^{2} \) |
| 29 | \( 1 + 9.73T + 29T^{2} \) |
| 31 | \( 1 - 2.03T + 31T^{2} \) |
| 37 | \( 1 + 7.43T + 37T^{2} \) |
| 41 | \( 1 - 10.5iT - 41T^{2} \) |
| 43 | \( 1 + 8.76iT - 43T^{2} \) |
| 47 | \( 1 + 5.11T + 47T^{2} \) |
| 53 | \( 1 + 3.12T + 53T^{2} \) |
| 59 | \( 1 + 11.2T + 59T^{2} \) |
| 61 | \( 1 + 3.97iT - 61T^{2} \) |
| 67 | \( 1 + 2.36iT - 67T^{2} \) |
| 71 | \( 1 + 4.04iT - 71T^{2} \) |
| 73 | \( 1 + 12.3iT - 73T^{2} \) |
| 79 | \( 1 - 7.61iT - 79T^{2} \) |
| 83 | \( 1 + 12.8T + 83T^{2} \) |
| 89 | \( 1 - 14.6iT - 89T^{2} \) |
| 97 | \( 1 - 3.97iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75863591458540984959674830424, −9.886869347050252655179515632026, −9.244432077354122246872126278833, −8.200851048026747420364037313250, −7.17646526478381777856782982524, −6.73943054198216876659100152948, −5.96547465649711665681129617098, −4.56436840634158900427614488393, −3.27359924372681644254322528290, −1.90474528797083608149634715383,
0.10267157456270152388171249941, 1.73967638539524123511930909092, 2.99529756859197918555491438099, 4.08630203253616412086365816001, 5.38182422562234335663323919100, 6.39488067532241891543964620194, 7.51027240689056531594292252179, 8.534595286101082335080888092427, 8.923007855515109837634696051264, 9.762805320006571519985710401460