L(s) = 1 | + (0.5 − 0.866i)2-s + 0.638·3-s + (0.500 + 0.866i)4-s + (−0.5 + 0.866i)5-s + (0.319 − 0.553i)6-s + (−0.290 + 0.503i)7-s + 3·8-s − 2.59·9-s + (0.499 + 0.866i)10-s + (−2.94 + 5.10i)11-s + (0.319 + 0.553i)12-s + (2.08 + 3.61i)13-s + (0.290 + 0.503i)14-s + (−0.319 + 0.553i)15-s + (0.500 − 0.866i)16-s + (−1.92 + 3.34i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + 0.368·3-s + (0.250 + 0.433i)4-s + (−0.223 + 0.387i)5-s + (0.130 − 0.225i)6-s + (−0.109 + 0.190i)7-s + 1.06·8-s − 0.864·9-s + (0.158 + 0.273i)10-s + (−0.888 + 1.53i)11-s + (0.0921 + 0.159i)12-s + (0.578 + 1.00i)13-s + (0.0777 + 0.134i)14-s + (−0.0824 + 0.142i)15-s + (0.125 − 0.216i)16-s + (−0.467 + 0.810i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.60191 + 0.908121i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.60191 + 0.908121i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.5 - 0.866i)T \) |
| 151 | \( 1 + (-3.75 + 11.7i)T \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 - 0.638T + 3T^{2} \) |
| 7 | \( 1 + (0.290 - 0.503i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.94 - 5.10i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.08 - 3.61i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.92 - 3.34i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + 3.11T + 19T^{2} \) |
| 23 | \( 1 + (-4.37 + 7.58i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 0.628T + 29T^{2} \) |
| 31 | \( 1 + (-2.92 + 5.06i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.34 + 4.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 0.943T + 41T^{2} \) |
| 43 | \( 1 + (-5.14 - 8.91i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.809 + 1.40i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 0.839T + 53T^{2} \) |
| 59 | \( 1 - 14.5T + 59T^{2} \) |
| 61 | \( 1 + (1.76 + 3.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + 3.68T + 67T^{2} \) |
| 71 | \( 1 + (-0.586 - 1.01i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 10.1T + 73T^{2} \) |
| 79 | \( 1 - 13.8T + 79T^{2} \) |
| 83 | \( 1 + 10.5T + 83T^{2} \) |
| 89 | \( 1 + (3.10 + 5.37i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.697 + 1.20i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85455743463940689537050382891, −9.754159315495910628863754077646, −8.682563565863391682182813155414, −7.982211233141814988365826229516, −7.04493320334213112817452961109, −6.20059044918384998016062309679, −4.64411237814365600127530892704, −3.99779065653292042402051144583, −2.64629856945892124005802924585, −2.17092578985876445345542388482,
0.78002682056977162374326259959, 2.67430615369067870616178550056, 3.65851773083065988216867815705, 5.24873943867558446408041025009, 5.53789787410967726040851779866, 6.59693868327683143133458432722, 7.68881214327781451278892522776, 8.354895547540611057151393009111, 9.102015335103533871718817838030, 10.38420103969121286000890431513