Properties

Label 2-755-755.754-c0-0-8
Degree $2$
Conductor $755$
Sign $1$
Analytic cond. $0.376794$
Root an. cond. $0.613835$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·3-s + 4-s − 5-s + 1.99·9-s − 11-s + 1.73·12-s − 1.73·13-s − 1.73·15-s + 16-s − 19-s − 20-s − 1.73·23-s + 25-s + 1.73·27-s + 29-s + 31-s − 1.73·33-s + 1.99·36-s − 2.99·39-s − 44-s − 1.99·45-s + 1.73·48-s − 49-s − 1.73·52-s + 55-s − 1.73·57-s + 59-s + ⋯
L(s)  = 1  + 1.73·3-s + 4-s − 5-s + 1.99·9-s − 11-s + 1.73·12-s − 1.73·13-s − 1.73·15-s + 16-s − 19-s − 20-s − 1.73·23-s + 25-s + 1.73·27-s + 29-s + 31-s − 1.73·33-s + 1.99·36-s − 2.99·39-s − 44-s − 1.99·45-s + 1.73·48-s − 49-s − 1.73·52-s + 55-s − 1.73·57-s + 59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(755\)    =    \(5 \cdot 151\)
Sign: $1$
Analytic conductor: \(0.376794\)
Root analytic conductor: \(0.613835\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{755} (754, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 755,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.579539790\)
\(L(\frac12)\) \(\approx\) \(1.579539790\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
151 \( 1 + T \)
good2 \( 1 - T^{2} \)
3 \( 1 - 1.73T + T^{2} \)
7 \( 1 + T^{2} \)
11 \( 1 + T + T^{2} \)
13 \( 1 + 1.73T + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + T + T^{2} \)
23 \( 1 + 1.73T + T^{2} \)
29 \( 1 - T + T^{2} \)
31 \( 1 - T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 - T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.73T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - 1.73T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + 1.73T + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.21782193389046636105925250954, −9.896451532295190443474116702117, −8.434366475592738567846902781015, −8.019490309682989803793419777293, −7.42377890726675313317546394023, −6.56815152140035116736119583521, −4.86767336694668303350570503257, −3.84126309679339668186302161872, −2.73707644383664244560233770965, −2.23105790776941460457164632467, 2.23105790776941460457164632467, 2.73707644383664244560233770965, 3.84126309679339668186302161872, 4.86767336694668303350570503257, 6.56815152140035116736119583521, 7.42377890726675313317546394023, 8.019490309682989803793419777293, 8.434366475592738567846902781015, 9.896451532295190443474116702117, 10.21782193389046636105925250954

Graph of the $Z$-function along the critical line