L(s) = 1 | + (−1 + i)2-s + (1.22 + 1.22i)3-s − 2i·4-s − 2.44·6-s + (0.244 − 0.244i)7-s + (2 + 2i)8-s + 2.99i·9-s + 16.9·11-s + (2.44 − 2.44i)12-s + (2.02 + 2.02i)13-s + 0.489i·14-s − 4·16-s + (−1.80 + 1.80i)17-s + (−2.99 − 2.99i)18-s − 31.8i·19-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (0.408 + 0.408i)3-s − 0.5i·4-s − 0.408·6-s + (0.0349 − 0.0349i)7-s + (0.250 + 0.250i)8-s + 0.333i·9-s + 1.53·11-s + (0.204 − 0.204i)12-s + (0.155 + 0.155i)13-s + 0.0349i·14-s − 0.250·16-s + (−0.106 + 0.106i)17-s + (−0.166 − 0.166i)18-s − 1.67i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.827014943\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.827014943\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 3 | \( 1 + (-1.22 - 1.22i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.244 + 0.244i)T - 49iT^{2} \) |
| 11 | \( 1 - 16.9T + 121T^{2} \) |
| 13 | \( 1 + (-2.02 - 2.02i)T + 169iT^{2} \) |
| 17 | \( 1 + (1.80 - 1.80i)T - 289iT^{2} \) |
| 19 | \( 1 + 31.8iT - 361T^{2} \) |
| 23 | \( 1 + (-2.22 - 2.22i)T + 529iT^{2} \) |
| 29 | \( 1 + 21.6iT - 841T^{2} \) |
| 31 | \( 1 - 15.2T + 961T^{2} \) |
| 37 | \( 1 + (1.00 - 1.00i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 1.49T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-54.0 - 54.0i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-37.1 + 37.1i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-58.5 - 58.5i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 85.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 11.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + (33.8 - 33.8i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 81.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + (0.0883 + 0.0883i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 99.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (11.2 + 11.2i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 38.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (57.8 - 57.8i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.988055751604490894156885260937, −9.167723586291804308765715572797, −8.827122460237706565074428855487, −7.70775308043207598182608922829, −6.82405217630314752859884407009, −6.05131513354687521781301473049, −4.75476857648666249787859633481, −3.93472341863536271137018091461, −2.51099442967117748765788058733, −0.995279096798155159494122482874,
1.01850585801379704675770565611, 2.03494167294549534982636784437, 3.40919258640734054749987322726, 4.16422902974960195346270345862, 5.75667538588934760813818481132, 6.73084614700412013078609913821, 7.57266928939532981336944385237, 8.548726965769443390819415268033, 9.087429643394421175829922620936, 9.998259343060371563693058674383