L(s) = 1 | + (−1 + i)2-s + (−1.22 − 1.22i)3-s − 2i·4-s + 2.44·6-s + (6.47 − 6.47i)7-s + (2 + 2i)8-s + 2.99i·9-s + 0.239·11-s + (−2.44 + 2.44i)12-s + (3.35 + 3.35i)13-s + 12.9i·14-s − 4·16-s + (14.3 − 14.3i)17-s + (−2.99 − 2.99i)18-s − 2.54i·19-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (−0.408 − 0.408i)3-s − 0.5i·4-s + 0.408·6-s + (0.924 − 0.924i)7-s + (0.250 + 0.250i)8-s + 0.333i·9-s + 0.0217·11-s + (−0.204 + 0.204i)12-s + (0.258 + 0.258i)13-s + 0.924i·14-s − 0.250·16-s + (0.844 − 0.844i)17-s + (−0.166 − 0.166i)18-s − 0.134i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.346063616\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.346063616\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 3 | \( 1 + (1.22 + 1.22i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-6.47 + 6.47i)T - 49iT^{2} \) |
| 11 | \( 1 - 0.239T + 121T^{2} \) |
| 13 | \( 1 + (-3.35 - 3.35i)T + 169iT^{2} \) |
| 17 | \( 1 + (-14.3 + 14.3i)T - 289iT^{2} \) |
| 19 | \( 1 + 2.54iT - 361T^{2} \) |
| 23 | \( 1 + (-26.7 - 26.7i)T + 529iT^{2} \) |
| 29 | \( 1 - 19.8iT - 841T^{2} \) |
| 31 | \( 1 + 33.8T + 961T^{2} \) |
| 37 | \( 1 + (-25.5 + 25.5i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 31.3T + 1.68e3T^{2} \) |
| 43 | \( 1 + (52.7 + 52.7i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-19.7 + 19.7i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-32.6 - 32.6i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 42.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 47.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-86.4 + 86.4i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 128.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-21.2 - 21.2i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 53.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (81.9 + 81.9i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 1.92iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (37.1 - 37.1i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02502395806813741425404245185, −9.120322958407578381222880901680, −8.153128151213085515473536259428, −7.28635800103325352643640526519, −6.94498177988440232608486939631, −5.52746825739132302367724854167, −4.95087436579595490772884458255, −3.58003301937736253191562682736, −1.74958368989616928897065745287, −0.71808830605227645368318861244,
1.14540388481235238744268868942, 2.44672515161386295722895547705, 3.68717361584778685053625128576, 4.86437997061941210211314783440, 5.66656009042613508040214422043, 6.76237229879279437570621655705, 8.116727757055862399677460954015, 8.491033380563616183227071152782, 9.520408534068133484102978906280, 10.30216938509432611608429438093