L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 + 0.587i)4-s + (−0.809 − 0.587i)6-s + 3.23·7-s + (−0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s + (1.63 + 5.04i)11-s + (0.309 − 0.951i)12-s + (1.82 − 5.61i)13-s + (0.998 + 3.07i)14-s + (0.309 − 0.951i)16-s + (−0.828 − 0.602i)17-s + 18-s + (3.64 + 2.64i)19-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (−0.467 + 0.339i)3-s + (−0.404 + 0.293i)4-s + (−0.330 − 0.239i)6-s + 1.22·7-s + (−0.286 − 0.207i)8-s + (0.103 − 0.317i)9-s + (0.493 + 1.51i)11-s + (0.0892 − 0.274i)12-s + (0.506 − 1.55i)13-s + (0.266 + 0.821i)14-s + (0.0772 − 0.237i)16-s + (−0.201 − 0.146i)17-s + 0.235·18-s + (0.836 + 0.607i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0827 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0827 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11302 + 1.20927i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11302 + 1.20927i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 3 | \( 1 + (0.809 - 0.587i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 3.23T + 7T^{2} \) |
| 11 | \( 1 + (-1.63 - 5.04i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (-1.82 + 5.61i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (0.828 + 0.602i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-3.64 - 2.64i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-0.595 - 1.83i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (-0.210 + 0.153i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.81 - 1.31i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.95 - 9.08i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.07 - 9.47i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 5.30T + 43T^{2} \) |
| 47 | \( 1 + (-8.51 + 6.18i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.86 + 1.35i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.00 - 6.17i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (1.21 + 3.75i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (7.51 + 5.46i)T + (20.7 + 63.7i)T^{2} \) |
| 71 | \( 1 + (6.90 - 5.01i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.22 - 3.76i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-10.8 + 7.85i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (6.05 + 4.40i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (0.226 + 0.697i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-13.9 + 10.1i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40121722872234806804112457371, −9.864014322743995024914876125522, −8.682975299735127555348726149525, −7.87705796091985465398055280114, −7.16153761891907610912537066407, −6.04753996314550559076576728312, −5.09529089572717323260215321143, −4.58825071202373618330123019884, −3.31738257453982973741902817486, −1.43858611463357744189044653490,
1.00343103313018371868135687319, 2.11197232851903068212733802159, 3.64806610717157002229943132042, 4.60366894926453208818118716894, 5.56969625727729004232053160352, 6.46251226238783441559128885518, 7.53247637822329003551619040111, 8.732096690202420990802956368291, 9.057930694336913838993519316413, 10.54789238128203730835490540125