L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 + 0.587i)4-s + (−0.809 − 0.587i)6-s + 2.61·7-s + (−0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s + (−0.0883 − 0.271i)11-s + (0.309 − 0.951i)12-s + (−0.866 + 2.66i)13-s + (0.809 + 2.49i)14-s + (0.309 − 0.951i)16-s + (5.25 + 3.81i)17-s + 18-s + (0.358 + 0.260i)19-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (−0.467 + 0.339i)3-s + (−0.404 + 0.293i)4-s + (−0.330 − 0.239i)6-s + 0.990·7-s + (−0.286 − 0.207i)8-s + (0.103 − 0.317i)9-s + (−0.0266 − 0.0819i)11-s + (0.0892 − 0.274i)12-s + (−0.240 + 0.739i)13-s + (0.216 + 0.665i)14-s + (0.0772 − 0.237i)16-s + (1.27 + 0.925i)17-s + 0.235·18-s + (0.0822 + 0.0597i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.484 - 0.874i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.484 - 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.738248 + 1.25256i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.738248 + 1.25256i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 3 | \( 1 + (0.809 - 0.587i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 2.61T + 7T^{2} \) |
| 11 | \( 1 + (0.0883 + 0.271i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (0.866 - 2.66i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-5.25 - 3.81i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.358 - 0.260i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-2.01 - 6.20i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (5.87 - 4.26i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (2.93 + 2.13i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.40 + 4.31i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.64 + 5.06i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 8.05T + 43T^{2} \) |
| 47 | \( 1 + (7.27 - 5.28i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (11.2 - 8.17i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.15 - 3.56i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-4.02 - 12.3i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-8.27 - 6.01i)T + (20.7 + 63.7i)T^{2} \) |
| 71 | \( 1 + (-3.89 + 2.83i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.64 + 11.2i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.32 + 4.59i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-4.17 - 3.03i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (1.90 + 5.86i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (4.40 - 3.20i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77763465958434060632724123122, −9.622401035702901449175874336643, −8.954112501250037353479148427804, −7.78886014683973540769962974250, −7.31711071958885957194862034013, −5.97247030686195297817052922494, −5.40783891462949503559364660512, −4.43280131316825109465397934777, −3.49189548187274873075726266961, −1.56800621892576639991592459765,
0.807822671293984596481150103567, 2.15527826531034376542665911857, 3.38759143232703157999786883478, 4.82842532717074968917859337406, 5.25986709140660056399081218745, 6.43836529957462184488610120566, 7.65574062956991679274476052147, 8.202583983297475251112321711138, 9.486453712168909092543872312535, 10.19291703640824825339230474160