Properties

Label 2-75-75.2-c7-0-27
Degree $2$
Conductor $75$
Sign $0.959 - 0.280i$
Analytic cond. $23.4288$
Root an. cond. $4.84033$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.30 + 14.5i)2-s + (−38.7 + 26.1i)3-s + (−85.1 − 27.6i)4-s + (−102. + 260. i)5-s + (−290. − 625. i)6-s + (−331. − 331. i)7-s + (−257. + 505. i)8-s + (823. − 2.02e3i)9-s + (−3.55e3 − 2.08e3i)10-s + (−1.79e3 − 2.47e3i)11-s + (4.02e3 − 1.15e3i)12-s + (796. − 126. i)13-s + (5.59e3 − 4.06e3i)14-s + (−2.82e3 − 1.27e4i)15-s + (−1.60e4 − 1.16e4i)16-s + (−6.32e3 − 3.22e3i)17-s + ⋯
L(s)  = 1  + (−0.203 + 1.28i)2-s + (−0.829 + 0.558i)3-s + (−0.665 − 0.216i)4-s + (−0.365 + 0.930i)5-s + (−0.549 − 1.18i)6-s + (−0.365 − 0.365i)7-s + (−0.177 + 0.348i)8-s + (0.376 − 0.926i)9-s + (−1.12 − 0.660i)10-s + (−0.406 − 0.560i)11-s + (0.672 − 0.192i)12-s + (0.100 − 0.0159i)13-s + (0.545 − 0.396i)14-s + (−0.216 − 0.976i)15-s + (−0.978 − 0.711i)16-s + (−0.312 − 0.159i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.959 - 0.280i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.959 - 0.280i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $0.959 - 0.280i$
Analytic conductor: \(23.4288\)
Root analytic conductor: \(4.84033\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :7/2),\ 0.959 - 0.280i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.319724 + 0.0456761i\)
\(L(\frac12)\) \(\approx\) \(0.319724 + 0.0456761i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (38.7 - 26.1i)T \)
5 \( 1 + (102. - 260. i)T \)
good2 \( 1 + (2.30 - 14.5i)T + (-121. - 39.5i)T^{2} \)
7 \( 1 + (331. + 331. i)T + 8.23e5iT^{2} \)
11 \( 1 + (1.79e3 + 2.47e3i)T + (-6.02e6 + 1.85e7i)T^{2} \)
13 \( 1 + (-796. + 126. i)T + (5.96e7 - 1.93e7i)T^{2} \)
17 \( 1 + (6.32e3 + 3.22e3i)T + (2.41e8 + 3.31e8i)T^{2} \)
19 \( 1 + (-3.98e3 + 1.29e3i)T + (7.23e8 - 5.25e8i)T^{2} \)
23 \( 1 + (-2.55e4 - 4.04e3i)T + (3.23e9 + 1.05e9i)T^{2} \)
29 \( 1 + (3.26e3 - 1.00e4i)T + (-1.39e10 - 1.01e10i)T^{2} \)
31 \( 1 + (-2.31e4 - 7.11e4i)T + (-2.22e10 + 1.61e10i)T^{2} \)
37 \( 1 + (-8.35e4 - 5.27e5i)T + (-9.02e10 + 2.93e10i)T^{2} \)
41 \( 1 + (4.39e4 - 6.05e4i)T + (-6.01e10 - 1.85e11i)T^{2} \)
43 \( 1 + (4.62e5 - 4.62e5i)T - 2.71e11iT^{2} \)
47 \( 1 + (5.09e4 + 1.00e5i)T + (-2.97e11 + 4.09e11i)T^{2} \)
53 \( 1 + (-1.21e6 + 6.17e5i)T + (6.90e11 - 9.50e11i)T^{2} \)
59 \( 1 + (1.86e6 + 1.35e6i)T + (7.69e11 + 2.36e12i)T^{2} \)
61 \( 1 + (-2.57e6 + 1.87e6i)T + (9.71e11 - 2.98e12i)T^{2} \)
67 \( 1 + (-1.64e6 + 3.23e6i)T + (-3.56e12 - 4.90e12i)T^{2} \)
71 \( 1 + (2.43e6 + 7.90e5i)T + (7.35e12 + 5.34e12i)T^{2} \)
73 \( 1 + (-1.97e5 + 1.24e6i)T + (-1.05e13 - 3.41e12i)T^{2} \)
79 \( 1 + (1.48e6 + 4.81e5i)T + (1.55e13 + 1.12e13i)T^{2} \)
83 \( 1 + (-2.93e6 + 5.76e6i)T + (-1.59e13 - 2.19e13i)T^{2} \)
89 \( 1 + (7.85e6 - 5.70e6i)T + (1.36e13 - 4.20e13i)T^{2} \)
97 \( 1 + (-3.07e6 + 1.56e6i)T + (4.74e13 - 6.53e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45809331732364097991523331206, −11.74884092941327486265961780927, −10.90889613655521254766598290601, −9.771444871105333213860974881098, −8.255145888299093467291734648362, −6.95135074565322099586757276999, −6.28483717713348920476214298062, −4.96384490819316782458102930340, −3.26046659366147130104612013043, −0.16018806976458090979094023556, 1.00888030715751752367797830937, 2.30656248073995129918250104828, 4.21268755626046510530848421333, 5.65189972047641534849369972114, 7.21343784021060775475445354178, 8.761544589389960421774484068944, 9.963435308981124191559007161333, 11.07473099281261863724616647686, 11.99555177127568945233172558323, 12.66195578996012070039814153171

Graph of the $Z$-function along the critical line