Properties

Label 2-75-3.2-c4-0-7
Degree $2$
Conductor $75$
Sign $0.356 - 0.934i$
Analytic cond. $7.75274$
Root an. cond. $2.78437$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.407i·2-s + (−3.21 + 8.40i)3-s + 15.8·4-s + (3.42 + 1.30i)6-s + 46.9·7-s − 12.9i·8-s + (−60.3 − 54.0i)9-s + 200. i·11-s + (−50.8 + 133. i)12-s + 22.3·13-s − 19.1i·14-s + 248.·16-s + 344. i·17-s + (−22.0 + 24.5i)18-s − 59.9·19-s + ⋯
L(s)  = 1  − 0.101i·2-s + (−0.356 + 0.934i)3-s + 0.989·4-s + (0.0951 + 0.0363i)6-s + 0.958·7-s − 0.202i·8-s + (−0.745 − 0.666i)9-s + 1.66i·11-s + (−0.353 + 0.924i)12-s + 0.132·13-s − 0.0976i·14-s + 0.968·16-s + 1.19i·17-s + (−0.0679 + 0.0759i)18-s − 0.166·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 - 0.934i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.356 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $0.356 - 0.934i$
Analytic conductor: \(7.75274\)
Root analytic conductor: \(2.78437\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :2),\ 0.356 - 0.934i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.56085 + 1.07443i\)
\(L(\frac12)\) \(\approx\) \(1.56085 + 1.07443i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (3.21 - 8.40i)T \)
5 \( 1 \)
good2 \( 1 + 0.407iT - 16T^{2} \)
7 \( 1 - 46.9T + 2.40e3T^{2} \)
11 \( 1 - 200. iT - 1.46e4T^{2} \)
13 \( 1 - 22.3T + 2.85e4T^{2} \)
17 \( 1 - 344. iT - 8.35e4T^{2} \)
19 \( 1 + 59.9T + 1.30e5T^{2} \)
23 \( 1 - 212. iT - 2.79e5T^{2} \)
29 \( 1 + 578. iT - 7.07e5T^{2} \)
31 \( 1 - 490.T + 9.23e5T^{2} \)
37 \( 1 + 1.93e3T + 1.87e6T^{2} \)
41 \( 1 + 1.63e3iT - 2.82e6T^{2} \)
43 \( 1 - 2.16e3T + 3.41e6T^{2} \)
47 \( 1 + 2.28e3iT - 4.87e6T^{2} \)
53 \( 1 + 2.62e3iT - 7.89e6T^{2} \)
59 \( 1 + 4.10e3iT - 1.21e7T^{2} \)
61 \( 1 - 4.79e3T + 1.38e7T^{2} \)
67 \( 1 - 1.56e3T + 2.01e7T^{2} \)
71 \( 1 - 5.37e3iT - 2.54e7T^{2} \)
73 \( 1 - 4.32e3T + 2.83e7T^{2} \)
79 \( 1 + 4.80e3T + 3.89e7T^{2} \)
83 \( 1 + 3.38e3iT - 4.74e7T^{2} \)
89 \( 1 + 3.44e3iT - 6.27e7T^{2} \)
97 \( 1 + 5.44e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.45869749208901526828324114532, −12.52996212521943886380485206755, −11.65783880450778256154211976084, −10.68549853884104009985652947683, −9.863733520560154769870802938970, −8.244325717897699627803829736059, −6.84890555984579139929345324492, −5.37970391535560149569048470857, −4.00174130661177941993410261402, −1.95642356976332831520026574265, 1.11499446485083801322373491006, 2.77180360596670478328353157513, 5.35080871480607929597837353265, 6.46287431425182438384361439033, 7.63590502080173079180649041626, 8.590381822565995912207911473534, 10.81914359205929331244181361108, 11.35413303724553495921200596771, 12.27263709504543823325750003361, 13.70205031765861188745581330774

Graph of the $Z$-function along the critical line