L(s) = 1 | + (−1.38 − 0.282i)2-s + 3.03·3-s + (1.84 + 0.782i)4-s + (−0.707 + 0.707i)5-s + (−4.20 − 0.855i)6-s − 4.17i·7-s + (−2.33 − 1.60i)8-s + 6.18·9-s + (1.17 − 0.780i)10-s + 2.56·11-s + (5.57 + 2.37i)12-s + (1.37 − 1.37i)13-s + (−1.17 + 5.78i)14-s + (−2.14 + 2.14i)15-s + (2.77 + 2.87i)16-s + (−2.87 + 2.87i)17-s + ⋯ |
L(s) = 1 | + (−0.979 − 0.199i)2-s + 1.75·3-s + (0.920 + 0.391i)4-s + (−0.316 + 0.316i)5-s + (−1.71 − 0.349i)6-s − 1.57i·7-s + (−0.823 − 0.566i)8-s + 2.06·9-s + (0.372 − 0.246i)10-s + 0.773·11-s + (1.61 + 0.684i)12-s + (0.380 − 0.380i)13-s + (−0.314 + 1.54i)14-s + (−0.553 + 0.553i)15-s + (0.694 + 0.719i)16-s + (−0.696 + 0.696i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.759 + 0.650i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.759 + 0.650i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69486 - 0.626697i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69486 - 0.626697i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 + 0.282i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 37 | \( 1 + (2.30 - 5.62i)T \) |
good | 3 | \( 1 - 3.03T + 3T^{2} \) |
| 7 | \( 1 + 4.17iT - 7T^{2} \) |
| 11 | \( 1 - 2.56T + 11T^{2} \) |
| 13 | \( 1 + (-1.37 + 1.37i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.87 - 2.87i)T - 17iT^{2} \) |
| 19 | \( 1 + (-3.33 - 3.33i)T + 19iT^{2} \) |
| 23 | \( 1 + (5.11 + 5.11i)T + 23iT^{2} \) |
| 29 | \( 1 + (0.274 + 0.274i)T + 29iT^{2} \) |
| 31 | \( 1 + (-4.00 + 4.00i)T - 31iT^{2} \) |
| 41 | \( 1 + 8.34iT - 41T^{2} \) |
| 43 | \( 1 + (3.95 + 3.95i)T + 43iT^{2} \) |
| 47 | \( 1 - 7.51iT - 47T^{2} \) |
| 53 | \( 1 - 0.614T + 53T^{2} \) |
| 59 | \( 1 + (-6.70 - 6.70i)T + 59iT^{2} \) |
| 61 | \( 1 + (-2.54 - 2.54i)T + 61iT^{2} \) |
| 67 | \( 1 - 14.4T + 67T^{2} \) |
| 71 | \( 1 - 7.59iT - 71T^{2} \) |
| 73 | \( 1 + 9.40iT - 73T^{2} \) |
| 79 | \( 1 + (-1.43 - 1.43i)T + 79iT^{2} \) |
| 83 | \( 1 - 16.9iT - 83T^{2} \) |
| 89 | \( 1 + (-3.33 - 3.33i)T + 89iT^{2} \) |
| 97 | \( 1 + (7.76 - 7.76i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17833260813067798246171345595, −9.415031505440354100678917215890, −8.337556333892629582053360280256, −8.049758880290899325517829656414, −7.14802035141923726949154217405, −6.47504308662864363048601956096, −3.91164736174240607718132075618, −3.79766255434391924569979229888, −2.44277704936227454780302474316, −1.19504665131965136909309887764,
1.66909099143354333745508853427, 2.57524153188513795745233993918, 3.56463755166363139431104313777, 5.09147650980438117904171075272, 6.42672517922641462257793009341, 7.32214263062884646771848174190, 8.308570842023909871598199871164, 8.712130307047920811546024215668, 9.385916304771610990615508316631, 9.780058928539246721765160079024