Properties

Label 2-740-740.443-c1-0-73
Degree $2$
Conductor $740$
Sign $-0.967 - 0.252i$
Analytic cond. $5.90892$
Root an. cond. $2.43082$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − i)2-s + 2i·4-s + (−2 + i)5-s + (2 − 2i)8-s + 3i·9-s + (3 + i)10-s + (1 − i)13-s − 4·16-s + (−3 − 3i)17-s + (3 − 3i)18-s + (−2 − 4i)20-s + (3 − 4i)25-s − 2·26-s − 10·29-s + (4 + 4i)32-s + ⋯
L(s)  = 1  + (−0.707 − 0.707i)2-s + i·4-s + (−0.894 + 0.447i)5-s + (0.707 − 0.707i)8-s + i·9-s + (0.948 + 0.316i)10-s + (0.277 − 0.277i)13-s − 16-s + (−0.727 − 0.727i)17-s + (0.707 − 0.707i)18-s + (−0.447 − 0.894i)20-s + (0.600 − 0.800i)25-s − 0.392·26-s − 1.85·29-s + (0.707 + 0.707i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 - 0.252i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.967 - 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(740\)    =    \(2^{2} \cdot 5 \cdot 37\)
Sign: $-0.967 - 0.252i$
Analytic conductor: \(5.90892\)
Root analytic conductor: \(2.43082\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{740} (443, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 740,\ (\ :1/2),\ -0.967 - 0.252i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1 + i)T \)
5 \( 1 + (2 - i)T \)
37 \( 1 + (6 + i)T \)
good3 \( 1 - 3iT^{2} \)
7 \( 1 + 7iT^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + (-1 + i)T - 13iT^{2} \)
17 \( 1 + (3 + 3i)T + 17iT^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 23iT^{2} \)
29 \( 1 + 10T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
41 \( 1 + 8T + 41T^{2} \)
43 \( 1 + 43iT^{2} \)
47 \( 1 + 47iT^{2} \)
53 \( 1 + (5 + 5i)T + 53iT^{2} \)
59 \( 1 - 59T^{2} \)
61 \( 1 - 10iT - 61T^{2} \)
67 \( 1 + 67iT^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + (5 + 5i)T + 73iT^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 - 83iT^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + (-13 - 13i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10428359662787337066770518094, −9.016375028131753396803122422610, −8.254932627667305479156273850089, −7.48888235165029027821752309908, −6.82484764981506984045492994753, −5.18554313264763678897389366079, −4.07867576305383418033703019225, −3.11599716682158948165795648927, −1.95863352292669749078152531455, 0, 1.57021912013000572876739886236, 3.57226654403372571652121585562, 4.54769401646004883654516575513, 5.70874552038808586344125287731, 6.63858501741340341941558566839, 7.40247154014426288428788206943, 8.371720403993575076604923550551, 8.951394856059769887022274884015, 9.680603197913957584464900716548

Graph of the $Z$-function along the critical line