L(s) = 1 | + (−1 − i)2-s + 2i·4-s + (−1 + 2i)5-s + (2 − 2i)8-s + 3·9-s + (3 − i)10-s + (−5 + 5i)13-s − 4·16-s + (3 − 3i)17-s + (−3 − 3i)18-s + (−4 − 2i)20-s + (−3 − 4i)25-s + 10·26-s + (−7 + 7i)29-s + (4 + 4i)32-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + i·4-s + (−0.447 + 0.894i)5-s + (0.707 − 0.707i)8-s + 9-s + (0.948 − 0.316i)10-s + (−1.38 + 1.38i)13-s − 16-s + (0.727 − 0.727i)17-s + (−0.707 − 0.707i)18-s + (−0.894 − 0.447i)20-s + (−0.600 − 0.800i)25-s + 1.96·26-s + (−1.29 + 1.29i)29-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0739 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0739 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.435651 + 0.469156i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.435651 + 0.469156i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 5 | \( 1 + (1 - 2i)T \) |
| 37 | \( 1 + (6 + i)T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + (5 - 5i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3 + 3i)T - 17iT^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 23iT^{2} \) |
| 29 | \( 1 + (7 - 7i)T - 29iT^{2} \) |
| 31 | \( 1 + 31iT^{2} \) |
| 41 | \( 1 - 10iT - 41T^{2} \) |
| 43 | \( 1 + 43iT^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 14iT - 53T^{2} \) |
| 59 | \( 1 - 59iT^{2} \) |
| 61 | \( 1 + (1 - i)T - 61iT^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 16T + 73T^{2} \) |
| 79 | \( 1 - 79iT^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (3 - 3i)T - 89iT^{2} \) |
| 97 | \( 1 + (5 - 5i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56842578546078363999876526192, −9.690242110983053745755253548764, −9.289402987826110967876534863215, −7.889095465280755077757988479061, −7.22583522155789220202747930495, −6.74457544915381568172940646335, −4.87175736850027046647198865613, −3.92063686956543484103229579875, −2.86446577248565805811790527708, −1.68854438450245211138321709949,
0.41687409387860703088249900587, 1.87730054231416310968622906773, 3.82126891615290865082867114937, 5.01269930283249481078866924221, 5.57618074407860974052111877896, 6.91896595231618922640353417546, 7.78579193860585766106208041316, 8.133446921337492919665139900944, 9.355055197230425687941881543723, 9.932428092662077078314283769445