Properties

Label 2-74-1.1-c5-0-7
Degree $2$
Conductor $74$
Sign $1$
Analytic cond. $11.8684$
Root an. cond. $3.44505$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 8.15·3-s + 16·4-s + 86.4·5-s + 32.6·6-s + 72.3·7-s + 64·8-s − 176.·9-s + 345.·10-s − 547.·11-s + 130.·12-s + 630.·13-s + 289.·14-s + 704.·15-s + 256·16-s − 202.·17-s − 706.·18-s + 2.31e3·19-s + 1.38e3·20-s + 589.·21-s − 2.19e3·22-s − 1.34e3·23-s + 521.·24-s + 4.35e3·25-s + 2.52e3·26-s − 3.41e3·27-s + 1.15e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.522·3-s + 0.5·4-s + 1.54·5-s + 0.369·6-s + 0.558·7-s + 0.353·8-s − 0.726·9-s + 1.09·10-s − 1.36·11-s + 0.261·12-s + 1.03·13-s + 0.394·14-s + 0.808·15-s + 0.250·16-s − 0.169·17-s − 0.513·18-s + 1.47·19-s + 0.773·20-s + 0.291·21-s − 0.964·22-s − 0.531·23-s + 0.184·24-s + 1.39·25-s + 0.731·26-s − 0.902·27-s + 0.279·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $1$
Analytic conductor: \(11.8684\)
Root analytic conductor: \(3.44505\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.859668657\)
\(L(\frac12)\) \(\approx\) \(3.859668657\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
37 \( 1 + 1.36e3T \)
good3 \( 1 - 8.15T + 243T^{2} \)
5 \( 1 - 86.4T + 3.12e3T^{2} \)
7 \( 1 - 72.3T + 1.68e4T^{2} \)
11 \( 1 + 547.T + 1.61e5T^{2} \)
13 \( 1 - 630.T + 3.71e5T^{2} \)
17 \( 1 + 202.T + 1.41e6T^{2} \)
19 \( 1 - 2.31e3T + 2.47e6T^{2} \)
23 \( 1 + 1.34e3T + 6.43e6T^{2} \)
29 \( 1 - 634.T + 2.05e7T^{2} \)
31 \( 1 + 7.38e3T + 2.86e7T^{2} \)
41 \( 1 + 496.T + 1.15e8T^{2} \)
43 \( 1 + 1.23e3T + 1.47e8T^{2} \)
47 \( 1 + 868.T + 2.29e8T^{2} \)
53 \( 1 - 1.31e4T + 4.18e8T^{2} \)
59 \( 1 + 3.09e4T + 7.14e8T^{2} \)
61 \( 1 + 4.55e4T + 8.44e8T^{2} \)
67 \( 1 - 4.63e4T + 1.35e9T^{2} \)
71 \( 1 + 7.95e4T + 1.80e9T^{2} \)
73 \( 1 - 1.50e4T + 2.07e9T^{2} \)
79 \( 1 + 9.38e3T + 3.07e9T^{2} \)
83 \( 1 - 6.57e4T + 3.93e9T^{2} \)
89 \( 1 + 1.42e5T + 5.58e9T^{2} \)
97 \( 1 - 1.48e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76001444883983610228427645316, −12.95135621500068002567959116890, −11.36414943357461162069313753820, −10.31469474441338473312950452812, −9.035727352536272875301661010992, −7.74350485746252364300726240488, −5.96619079079016509623036066638, −5.21781172563474506161129652273, −3.09014218817677445372765279395, −1.83851338775316483428800257983, 1.83851338775316483428800257983, 3.09014218817677445372765279395, 5.21781172563474506161129652273, 5.96619079079016509623036066638, 7.74350485746252364300726240488, 9.035727352536272875301661010992, 10.31469474441338473312950452812, 11.36414943357461162069313753820, 12.95135621500068002567959116890, 13.76001444883983610228427645316

Graph of the $Z$-function along the critical line