Properties

Label 2-738-369.256-c1-0-18
Degree $2$
Conductor $738$
Sign $0.941 + 0.337i$
Analytic cond. $5.89295$
Root an. cond. $2.42754$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.104 + 0.994i)2-s + (0.158 + 1.72i)3-s + (−0.978 − 0.207i)4-s + (−2.94 − 0.625i)5-s + (−1.73 − 0.0230i)6-s + (−2.55 − 1.13i)7-s + (0.309 − 0.951i)8-s + (−2.95 + 0.545i)9-s + (0.929 − 2.85i)10-s + (4.22 − 0.897i)11-s + (0.203 − 1.72i)12-s + (−2.25 + 1.00i)13-s + (1.39 − 2.42i)14-s + (0.613 − 5.17i)15-s + (0.913 + 0.406i)16-s + (−1.49 + 4.60i)17-s + ⋯
L(s)  = 1  + (−0.0739 + 0.703i)2-s + (0.0912 + 0.995i)3-s + (−0.489 − 0.103i)4-s + (−1.31 − 0.279i)5-s + (−0.707 − 0.00941i)6-s + (−0.966 − 0.430i)7-s + (0.109 − 0.336i)8-s + (−0.983 + 0.181i)9-s + (0.293 − 0.904i)10-s + (1.27 − 0.270i)11-s + (0.0588 − 0.496i)12-s + (−0.625 + 0.278i)13-s + (0.373 − 0.647i)14-s + (0.158 − 1.33i)15-s + (0.228 + 0.101i)16-s + (−0.362 + 1.11i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.941 + 0.337i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.941 + 0.337i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(738\)    =    \(2 \cdot 3^{2} \cdot 41\)
Sign: $0.941 + 0.337i$
Analytic conductor: \(5.89295\)
Root analytic conductor: \(2.42754\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{738} (625, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 738,\ (\ :1/2),\ 0.941 + 0.337i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.570191 - 0.0991539i\)
\(L(\frac12)\) \(\approx\) \(0.570191 - 0.0991539i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.104 - 0.994i)T \)
3 \( 1 + (-0.158 - 1.72i)T \)
41 \( 1 + (-3.20 + 5.54i)T \)
good5 \( 1 + (2.94 + 0.625i)T + (4.56 + 2.03i)T^{2} \)
7 \( 1 + (2.55 + 1.13i)T + (4.68 + 5.20i)T^{2} \)
11 \( 1 + (-4.22 + 0.897i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (2.25 - 1.00i)T + (8.69 - 9.66i)T^{2} \)
17 \( 1 + (1.49 - 4.60i)T + (-13.7 - 9.99i)T^{2} \)
19 \( 1 + (-6.21 + 4.51i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 + (-3.28 + 1.46i)T + (15.3 - 17.0i)T^{2} \)
29 \( 1 + (-4.74 + 5.27i)T + (-3.03 - 28.8i)T^{2} \)
31 \( 1 + (6.27 + 6.97i)T + (-3.24 + 30.8i)T^{2} \)
37 \( 1 + (-0.560 - 1.72i)T + (-29.9 + 21.7i)T^{2} \)
43 \( 1 + (0.170 - 1.62i)T + (-42.0 - 8.94i)T^{2} \)
47 \( 1 + (-0.0805 + 0.766i)T + (-45.9 - 9.77i)T^{2} \)
53 \( 1 + (2.62 + 8.09i)T + (-42.8 + 31.1i)T^{2} \)
59 \( 1 + (-0.698 + 0.310i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + (13.4 + 5.98i)T + (40.8 + 45.3i)T^{2} \)
67 \( 1 + (6.17 + 1.31i)T + (61.2 + 27.2i)T^{2} \)
71 \( 1 + (4.64 - 14.2i)T + (-57.4 - 41.7i)T^{2} \)
73 \( 1 + 15.4T + 73T^{2} \)
79 \( 1 + (-1.54 - 2.67i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-4.21 - 7.30i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-13.1 + 9.55i)T + (27.5 - 84.6i)T^{2} \)
97 \( 1 + (-4.19 + 4.66i)T + (-10.1 - 96.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07604330494753357921374183728, −9.314482311438257497967407721521, −8.752721525587788785723583031232, −7.73040154045471811025008323397, −6.89466752802222734502793486307, −5.94259736152163455475124587889, −4.62614100846480569313197116287, −4.02689654353596091373968027368, −3.21912744875344361413741755787, −0.34676702110837178031825978718, 1.24246038852107258484824480865, 2.99402621540014179112480348624, 3.39920780772405517072083202825, 4.85640705857111755981408566835, 6.17290983684223527134548527677, 7.26392406653388353626130492031, 7.56577159494362611779272426162, 8.976195839277560400097391580658, 9.303808180440945275676742857614, 10.60566714218729421514196246648

Graph of the $Z$-function along the critical line