L(s) = 1 | + (−1.5 − 0.866i)2-s + (1.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−1.5 − 2.59i)6-s + 1.73i·8-s + (1.5 + 2.59i)9-s + (−1.5 + 0.866i)10-s + (−3 + 1.73i)11-s + 1.73i·12-s − 3.46i·13-s + (1.5 − 0.866i)15-s + (2.49 − 4.33i)16-s + (3 + 5.19i)17-s − 5.19i·18-s + (6 + 3.46i)19-s + ⋯ |
L(s) = 1 | + (−1.06 − 0.612i)2-s + (0.866 + 0.499i)3-s + (0.250 + 0.433i)4-s + (0.223 − 0.387i)5-s + (−0.612 − 1.06i)6-s + 0.612i·8-s + (0.5 + 0.866i)9-s + (−0.474 + 0.273i)10-s + (−0.904 + 0.522i)11-s + 0.500i·12-s − 0.960i·13-s + (0.387 − 0.223i)15-s + (0.624 − 1.08i)16-s + (0.727 + 1.26i)17-s − 1.22i·18-s + (1.37 + 0.794i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17094 + 0.0371169i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17094 + 0.0371169i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.5 + 0.866i)T + (1 + 1.73i)T^{2} \) |
| 11 | \( 1 + (3 - 1.73i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-6 - 3.46i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 - 0.866i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 1.73iT - 29T^{2} \) |
| 31 | \( 1 + (-3 + 1.73i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2 - 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 - T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.5 - 2.59i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.5 - 11.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.92iT - 71T^{2} \) |
| 73 | \( 1 + (3 - 1.73i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-8 + 13.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9T + 83T^{2} \) |
| 89 | \( 1 + (-1.5 + 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 10.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12081795069356890849177740334, −9.762461707724518817279864473853, −8.791420692307502560887036280968, −7.958168204422630260044856493039, −7.66754596454278626410245235211, −5.70352292515603276330337282614, −4.96698557208501029033237445609, −3.52029523256780488347456354629, −2.49639712592843894223475676327, −1.30571291054086267471221576766,
0.915060577942144369755245303036, 2.58483747134084359262287939473, 3.52943232193821911354473291061, 5.13490071347792168220424589409, 6.47324495057860136401268846122, 7.22406830593214149349290596604, 7.70827584720661342318085965207, 8.652754806225204056131835372910, 9.380639126804241796461073885061, 9.861560244749447161958471116739