Properties

Label 2-731-1.1-c3-0-136
Degree $2$
Conductor $731$
Sign $1$
Analytic cond. $43.1303$
Root an. cond. $6.56737$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.57·2-s + 7.79·3-s + 12.8·4-s + 13.2·5-s + 35.6·6-s − 25.2·7-s + 22.3·8-s + 33.8·9-s + 60.7·10-s + 58.0·11-s + 100.·12-s + 44.0·13-s − 115.·14-s + 103.·15-s − 0.999·16-s − 17·17-s + 154.·18-s − 56.7·19-s + 171.·20-s − 196.·21-s + 265.·22-s − 19.4·23-s + 174.·24-s + 51.8·25-s + 201.·26-s + 53.2·27-s − 324.·28-s + ⋯
L(s)  = 1  + 1.61·2-s + 1.50·3-s + 1.61·4-s + 1.18·5-s + 2.42·6-s − 1.36·7-s + 0.987·8-s + 1.25·9-s + 1.92·10-s + 1.59·11-s + 2.41·12-s + 0.940·13-s − 2.19·14-s + 1.78·15-s − 0.0156·16-s − 0.242·17-s + 2.02·18-s − 0.685·19-s + 1.91·20-s − 2.04·21-s + 2.57·22-s − 0.175·23-s + 1.48·24-s + 0.415·25-s + 1.51·26-s + 0.379·27-s − 2.19·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(731\)    =    \(17 \cdot 43\)
Sign: $1$
Analytic conductor: \(43.1303\)
Root analytic conductor: \(6.56737\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 731,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.879403913\)
\(L(\frac12)\) \(\approx\) \(9.879403913\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 + 17T \)
43 \( 1 + 43T \)
good2 \( 1 - 4.57T + 8T^{2} \)
3 \( 1 - 7.79T + 27T^{2} \)
5 \( 1 - 13.2T + 125T^{2} \)
7 \( 1 + 25.2T + 343T^{2} \)
11 \( 1 - 58.0T + 1.33e3T^{2} \)
13 \( 1 - 44.0T + 2.19e3T^{2} \)
19 \( 1 + 56.7T + 6.85e3T^{2} \)
23 \( 1 + 19.4T + 1.21e4T^{2} \)
29 \( 1 + 180.T + 2.43e4T^{2} \)
31 \( 1 - 86.8T + 2.97e4T^{2} \)
37 \( 1 + 56.2T + 5.06e4T^{2} \)
41 \( 1 + 77.0T + 6.89e4T^{2} \)
47 \( 1 + 27.2T + 1.03e5T^{2} \)
53 \( 1 + 62.3T + 1.48e5T^{2} \)
59 \( 1 - 190.T + 2.05e5T^{2} \)
61 \( 1 - 690.T + 2.26e5T^{2} \)
67 \( 1 - 217.T + 3.00e5T^{2} \)
71 \( 1 - 607.T + 3.57e5T^{2} \)
73 \( 1 - 202.T + 3.89e5T^{2} \)
79 \( 1 - 373.T + 4.93e5T^{2} \)
83 \( 1 - 364.T + 5.71e5T^{2} \)
89 \( 1 - 809.T + 7.04e5T^{2} \)
97 \( 1 + 1.55e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.642993176953228344292407798693, −9.339157175892690261683921335529, −8.428342654079716082098910250021, −6.78380151709986237658483717270, −6.46296684976616970683833259153, −5.57935649780354211906505581230, −3.97823187638316072765859654674, −3.63311074799726927077517399816, −2.60925398703790738816022620284, −1.72122449918906614131905988910, 1.72122449918906614131905988910, 2.60925398703790738816022620284, 3.63311074799726927077517399816, 3.97823187638316072765859654674, 5.57935649780354211906505581230, 6.46296684976616970683833259153, 6.78380151709986237658483717270, 8.428342654079716082098910250021, 9.339157175892690261683921335529, 9.642993176953228344292407798693

Graph of the $Z$-function along the critical line