Properties

Label 2-731-1.1-c3-0-99
Degree $2$
Conductor $731$
Sign $-1$
Analytic cond. $43.1303$
Root an. cond. $6.56737$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.48·2-s − 7.08·3-s − 5.78·4-s + 7.50·5-s − 10.5·6-s + 9.60·7-s − 20.5·8-s + 23.1·9-s + 11.1·10-s − 27.6·11-s + 40.9·12-s + 10.8·13-s + 14.2·14-s − 53.1·15-s + 15.7·16-s + 17·17-s + 34.4·18-s + 111.·19-s − 43.4·20-s − 68.0·21-s − 41.1·22-s − 38.6·23-s + 145.·24-s − 68.6·25-s + 16.2·26-s + 27.1·27-s − 55.5·28-s + ⋯
L(s)  = 1  + 0.525·2-s − 1.36·3-s − 0.723·4-s + 0.671·5-s − 0.716·6-s + 0.518·7-s − 0.906·8-s + 0.858·9-s + 0.353·10-s − 0.759·11-s + 0.986·12-s + 0.232·13-s + 0.272·14-s − 0.915·15-s + 0.246·16-s + 0.242·17-s + 0.451·18-s + 1.35·19-s − 0.485·20-s − 0.706·21-s − 0.399·22-s − 0.350·23-s + 1.23·24-s − 0.548·25-s + 0.122·26-s + 0.193·27-s − 0.375·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(731\)    =    \(17 \cdot 43\)
Sign: $-1$
Analytic conductor: \(43.1303\)
Root analytic conductor: \(6.56737\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 731,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 - 17T \)
43 \( 1 + 43T \)
good2 \( 1 - 1.48T + 8T^{2} \)
3 \( 1 + 7.08T + 27T^{2} \)
5 \( 1 - 7.50T + 125T^{2} \)
7 \( 1 - 9.60T + 343T^{2} \)
11 \( 1 + 27.6T + 1.33e3T^{2} \)
13 \( 1 - 10.8T + 2.19e3T^{2} \)
19 \( 1 - 111.T + 6.85e3T^{2} \)
23 \( 1 + 38.6T + 1.21e4T^{2} \)
29 \( 1 - 41.9T + 2.43e4T^{2} \)
31 \( 1 - 218.T + 2.97e4T^{2} \)
37 \( 1 + 78.0T + 5.06e4T^{2} \)
41 \( 1 + 208.T + 6.89e4T^{2} \)
47 \( 1 + 388.T + 1.03e5T^{2} \)
53 \( 1 - 742.T + 1.48e5T^{2} \)
59 \( 1 - 132.T + 2.05e5T^{2} \)
61 \( 1 + 451.T + 2.26e5T^{2} \)
67 \( 1 + 366.T + 3.00e5T^{2} \)
71 \( 1 + 669.T + 3.57e5T^{2} \)
73 \( 1 + 365.T + 3.89e5T^{2} \)
79 \( 1 + 457.T + 4.93e5T^{2} \)
83 \( 1 + 767.T + 5.71e5T^{2} \)
89 \( 1 - 28.9T + 7.04e5T^{2} \)
97 \( 1 + 890.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.951118056443286155469932667673, −8.737909663111749102461502458991, −7.78885320045961366173961685996, −6.51694917157627987759238807155, −5.62895569452471214277256488496, −5.25293960473942722702163134328, −4.39905174570944547225729983036, −3.00102936367876986616752405414, −1.27943397047539974020235419774, 0, 1.27943397047539974020235419774, 3.00102936367876986616752405414, 4.39905174570944547225729983036, 5.25293960473942722702163134328, 5.62895569452471214277256488496, 6.51694917157627987759238807155, 7.78885320045961366173961685996, 8.737909663111749102461502458991, 9.951118056443286155469932667673

Graph of the $Z$-function along the critical line