Properties

Label 2-3e6-1.1-c5-0-51
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.67·2-s + 43.3·4-s − 26.8·5-s + 155.·7-s − 98.4·8-s + 233.·10-s + 447.·11-s − 776.·13-s − 1.34e3·14-s − 532.·16-s + 501.·17-s − 463.·19-s − 1.16e3·20-s − 3.88e3·22-s + 3.34e3·23-s − 2.40e3·25-s + 6.74e3·26-s + 6.72e3·28-s + 5.99e3·29-s + 6.16e3·31-s + 7.77e3·32-s − 4.34e3·34-s − 4.17e3·35-s − 1.07e4·37-s + 4.01e3·38-s + 2.64e3·40-s + 7.37e3·41-s + ⋯
L(s)  = 1  − 1.53·2-s + 1.35·4-s − 0.481·5-s + 1.19·7-s − 0.543·8-s + 0.738·10-s + 1.11·11-s − 1.27·13-s − 1.83·14-s − 0.520·16-s + 0.420·17-s − 0.294·19-s − 0.651·20-s − 1.71·22-s + 1.31·23-s − 0.768·25-s + 1.95·26-s + 1.61·28-s + 1.32·29-s + 1.15·31-s + 1.34·32-s − 0.645·34-s − 0.575·35-s − 1.29·37-s + 0.451·38-s + 0.261·40-s + 0.685·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.092589224\)
\(L(\frac12)\) \(\approx\) \(1.092589224\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 8.67T + 32T^{2} \)
5 \( 1 + 26.8T + 3.12e3T^{2} \)
7 \( 1 - 155.T + 1.68e4T^{2} \)
11 \( 1 - 447.T + 1.61e5T^{2} \)
13 \( 1 + 776.T + 3.71e5T^{2} \)
17 \( 1 - 501.T + 1.41e6T^{2} \)
19 \( 1 + 463.T + 2.47e6T^{2} \)
23 \( 1 - 3.34e3T + 6.43e6T^{2} \)
29 \( 1 - 5.99e3T + 2.05e7T^{2} \)
31 \( 1 - 6.16e3T + 2.86e7T^{2} \)
37 \( 1 + 1.07e4T + 6.93e7T^{2} \)
41 \( 1 - 7.37e3T + 1.15e8T^{2} \)
43 \( 1 - 2.22e4T + 1.47e8T^{2} \)
47 \( 1 + 1.93e4T + 2.29e8T^{2} \)
53 \( 1 - 796.T + 4.18e8T^{2} \)
59 \( 1 - 3.16e4T + 7.14e8T^{2} \)
61 \( 1 - 7.17e3T + 8.44e8T^{2} \)
67 \( 1 + 5.12e3T + 1.35e9T^{2} \)
71 \( 1 + 1.81e4T + 1.80e9T^{2} \)
73 \( 1 - 2.84e4T + 2.07e9T^{2} \)
79 \( 1 - 6.81e4T + 3.07e9T^{2} \)
83 \( 1 + 8.54e4T + 3.93e9T^{2} \)
89 \( 1 + 1.71e4T + 5.58e9T^{2} \)
97 \( 1 + 1.21e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.542934013679778476291878375814, −8.717683197511819167431480187242, −8.062394720751083184928897832373, −7.35105151757895619016819924056, −6.59397263435939523333354276822, −5.05690597143014196698117049445, −4.21922288207796720289118468643, −2.61429974608867500164374010214, −1.49295452356513735849598835442, −0.66903993034663422870104160026, 0.66903993034663422870104160026, 1.49295452356513735849598835442, 2.61429974608867500164374010214, 4.21922288207796720289118468643, 5.05690597143014196698117049445, 6.59397263435939523333354276822, 7.35105151757895619016819924056, 8.062394720751083184928897832373, 8.717683197511819167431480187242, 9.542934013679778476291878375814

Graph of the $Z$-function along the critical line