Properties

Label 2-3e6-1.1-c5-0-145
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.2·2-s + 73.9·4-s + 72.1·5-s + 169.·7-s + 431.·8-s + 742.·10-s − 474.·11-s + 556.·13-s + 1.74e3·14-s + 2.07e3·16-s + 503.·17-s − 3.03·19-s + 5.32e3·20-s − 4.88e3·22-s − 599.·23-s + 2.07e3·25-s + 5.72e3·26-s + 1.25e4·28-s + 5.48e3·29-s − 3.41e3·31-s + 7.53e3·32-s + 5.18e3·34-s + 1.22e4·35-s + 4.79e3·37-s − 31.2·38-s + 3.11e4·40-s − 8.92e3·41-s + ⋯
L(s)  = 1  + 1.81·2-s + 2.30·4-s + 1.28·5-s + 1.31·7-s + 2.38·8-s + 2.34·10-s − 1.18·11-s + 0.912·13-s + 2.38·14-s + 2.02·16-s + 0.422·17-s − 0.00192·19-s + 2.97·20-s − 2.15·22-s − 0.236·23-s + 0.663·25-s + 1.66·26-s + 3.02·28-s + 1.21·29-s − 0.638·31-s + 1.30·32-s + 0.769·34-s + 1.69·35-s + 0.576·37-s − 0.00350·38-s + 3.07·40-s − 0.829·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(11.43376970\)
\(L(\frac12)\) \(\approx\) \(11.43376970\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 10.2T + 32T^{2} \)
5 \( 1 - 72.1T + 3.12e3T^{2} \)
7 \( 1 - 169.T + 1.68e4T^{2} \)
11 \( 1 + 474.T + 1.61e5T^{2} \)
13 \( 1 - 556.T + 3.71e5T^{2} \)
17 \( 1 - 503.T + 1.41e6T^{2} \)
19 \( 1 + 3.03T + 2.47e6T^{2} \)
23 \( 1 + 599.T + 6.43e6T^{2} \)
29 \( 1 - 5.48e3T + 2.05e7T^{2} \)
31 \( 1 + 3.41e3T + 2.86e7T^{2} \)
37 \( 1 - 4.79e3T + 6.93e7T^{2} \)
41 \( 1 + 8.92e3T + 1.15e8T^{2} \)
43 \( 1 + 1.81e4T + 1.47e8T^{2} \)
47 \( 1 - 1.99e4T + 2.29e8T^{2} \)
53 \( 1 + 1.04e4T + 4.18e8T^{2} \)
59 \( 1 + 1.05e4T + 7.14e8T^{2} \)
61 \( 1 - 1.06e4T + 8.44e8T^{2} \)
67 \( 1 - 1.77e3T + 1.35e9T^{2} \)
71 \( 1 - 4.37e4T + 1.80e9T^{2} \)
73 \( 1 + 8.62e4T + 2.07e9T^{2} \)
79 \( 1 + 6.82e4T + 3.07e9T^{2} \)
83 \( 1 - 7.75e4T + 3.93e9T^{2} \)
89 \( 1 + 4.28e4T + 5.58e9T^{2} \)
97 \( 1 + 1.86e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05082135586845598369713404861, −8.565642821376797423137181716905, −7.67711490978984928993878786063, −6.56028767232854935232984991216, −5.69271759059524900453625034768, −5.22427715009140937986692143487, −4.40245616122873247531807027331, −3.13179897405721199852000917752, −2.17778996931717396108195250884, −1.41306619266585403636699082594, 1.41306619266585403636699082594, 2.17778996931717396108195250884, 3.13179897405721199852000917752, 4.40245616122873247531807027331, 5.22427715009140937986692143487, 5.69271759059524900453625034768, 6.56028767232854935232984991216, 7.67711490978984928993878786063, 8.565642821376797423137181716905, 10.05082135586845598369713404861

Graph of the $Z$-function along the critical line