L(s) = 1 | + (1.02 − 1.77i)3-s + (−0.859 + 1.48i)5-s + (−0.5 + 2.59i)7-s + (−0.594 − 1.02i)9-s + (1.45 − 2.51i)11-s + (3.44 + 1.06i)13-s + (1.75 + 3.04i)15-s + 2.57·17-s + (−2.47 − 4.29i)19-s + (4.09 + 3.54i)21-s + 5.70·23-s + (1.02 + 1.77i)25-s + 3.70·27-s + (1.82 + 3.16i)29-s + (2.66 + 4.61i)31-s + ⋯ |
L(s) = 1 | + (0.590 − 1.02i)3-s + (−0.384 + 0.665i)5-s + (−0.188 + 0.981i)7-s + (−0.198 − 0.343i)9-s + (0.438 − 0.759i)11-s + (0.955 + 0.294i)13-s + (0.454 + 0.786i)15-s + 0.625·17-s + (−0.568 − 0.984i)19-s + (0.893 + 0.773i)21-s + 1.18·23-s + (0.204 + 0.354i)25-s + 0.713·27-s + (0.339 + 0.588i)29-s + (0.478 + 0.828i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.156i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 + 0.156i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.84661 - 0.145271i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.84661 - 0.145271i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.5 - 2.59i)T \) |
| 13 | \( 1 + (-3.44 - 1.06i)T \) |
good | 3 | \( 1 + (-1.02 + 1.77i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.859 - 1.48i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.45 + 2.51i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 2.57T + 17T^{2} \) |
| 19 | \( 1 + (2.47 + 4.29i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 5.70T + 23T^{2} \) |
| 29 | \( 1 + (-1.82 - 3.16i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.66 - 4.61i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 5.28T + 37T^{2} \) |
| 41 | \( 1 + (-3.76 - 6.52i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.42 + 4.20i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.39 + 4.15i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.563 - 0.976i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 7.87T + 59T^{2} \) |
| 61 | \( 1 + (7.44 + 12.8i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.882 - 1.52i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.53 - 2.66i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.56 + 9.63i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.61 + 2.80i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 2.52T + 83T^{2} \) |
| 89 | \( 1 + 11.3T + 89T^{2} \) |
| 97 | \( 1 + (4.39 - 7.60i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60820057921814842509360748942, −9.019177810517640619877708847551, −8.765105063199321161129079683757, −7.77571578615848514351562936446, −6.81269709412316679680754950283, −6.31613276949490974384877838678, −5.03245771496723387898034162060, −3.39363571364517480009948698358, −2.75669070816852920279907684751, −1.35198541556628765080714919040,
1.14646782952004094109255020087, 3.11854572946414819187303991888, 4.15250462448342586771329693227, 4.43688130950090900578537117066, 5.88150131592173786949886761421, 7.04844249124577664704623600655, 8.039497502085558734805746394543, 8.778509031727308508992383765204, 9.599478611728801179610899052219, 10.29749571972761276108211985176