L(s) = 1 | + 2.45·3-s + 1.45i·5-s + i·7-s + 3.02·9-s + 1.64i·11-s + (−2.45 + 2.64i)13-s + 3.57i·15-s + 5.29·17-s + 0.640i·19-s + 2.45i·21-s + 2.18·23-s + 2.88·25-s + 0.0679·27-s − 2.21·29-s − 4.29i·31-s + ⋯ |
L(s) = 1 | + 1.41·3-s + 0.650i·5-s + 0.377i·7-s + 1.00·9-s + 0.494i·11-s + (−0.680 + 0.732i)13-s + 0.922i·15-s + 1.28·17-s + 0.146i·19-s + 0.535i·21-s + 0.455·23-s + 0.576·25-s + 0.0130·27-s − 0.410·29-s − 0.771i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.680 - 0.732i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.680 - 0.732i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.18997 + 0.954124i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.18997 + 0.954124i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - iT \) |
| 13 | \( 1 + (2.45 - 2.64i)T \) |
good | 3 | \( 1 - 2.45T + 3T^{2} \) |
| 5 | \( 1 - 1.45iT - 5T^{2} \) |
| 11 | \( 1 - 1.64iT - 11T^{2} \) |
| 17 | \( 1 - 5.29T + 17T^{2} \) |
| 19 | \( 1 - 0.640iT - 19T^{2} \) |
| 23 | \( 1 - 2.18T + 23T^{2} \) |
| 29 | \( 1 + 2.21T + 29T^{2} \) |
| 31 | \( 1 + 4.29iT - 31T^{2} \) |
| 37 | \( 1 + 3.26iT - 37T^{2} \) |
| 41 | \( 1 + 0.842iT - 41T^{2} \) |
| 43 | \( 1 - 5.12T + 43T^{2} \) |
| 47 | \( 1 + 0.572iT - 47T^{2} \) |
| 53 | \( 1 + 6.25T + 53T^{2} \) |
| 59 | \( 1 + 10.0iT - 59T^{2} \) |
| 61 | \( 1 + 7.21T + 61T^{2} \) |
| 67 | \( 1 + 3.75iT - 67T^{2} \) |
| 71 | \( 1 + 2.42iT - 71T^{2} \) |
| 73 | \( 1 - 1.48iT - 73T^{2} \) |
| 79 | \( 1 - 5.19T + 79T^{2} \) |
| 83 | \( 1 + 17.3iT - 83T^{2} \) |
| 89 | \( 1 + 4.69iT - 89T^{2} \) |
| 97 | \( 1 - 11.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24910013283834941416395558757, −9.478559202493289456757879809477, −8.943682688678308190416181744332, −7.78046899574427402019422539696, −7.37925190721741003966193763093, −6.23958754729392613780719755622, −4.93660083333094557335005978886, −3.71372411092747995266767774589, −2.84285531148662330179914853537, −1.93058100726791730632800016855,
1.17755346752735106484043221106, 2.75874112674949245185134497027, 3.48179348552622821552352367398, 4.70211730684332933812878908665, 5.68770874595232428069666533383, 7.14817257108469165409561858862, 7.87485860474854071973263832987, 8.534570644651744537546515355709, 9.306917959490403585233162825549, 10.03777840470360461808345542179