Properties

Label 2-728-13.12-c1-0-13
Degree $2$
Conductor $728$
Sign $-0.895 + 0.445i$
Analytic cond. $5.81310$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.22·3-s − 4.22i·5-s + i·7-s + 7.41·9-s − 2.60i·11-s + (3.22 − 1.60i)13-s + 13.6i·15-s + 2.56·17-s − 3.60i·19-s − 3.22i·21-s + 3.61·23-s − 12.8·25-s − 14.2·27-s − 8.03·29-s − 1.56i·31-s + ⋯
L(s)  = 1  − 1.86·3-s − 1.89i·5-s + 0.377i·7-s + 2.47·9-s − 0.786i·11-s + (0.895 − 0.445i)13-s + 3.52i·15-s + 0.622·17-s − 0.827i·19-s − 0.704i·21-s + 0.754·23-s − 2.57·25-s − 2.74·27-s − 1.49·29-s − 0.281i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.445i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.895 + 0.445i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(728\)    =    \(2^{3} \cdot 7 \cdot 13\)
Sign: $-0.895 + 0.445i$
Analytic conductor: \(5.81310\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{728} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 728,\ (\ :1/2),\ -0.895 + 0.445i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.144137 - 0.612632i\)
\(L(\frac12)\) \(\approx\) \(0.144137 - 0.612632i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - iT \)
13 \( 1 + (-3.22 + 1.60i)T \)
good3 \( 1 + 3.22T + 3T^{2} \)
5 \( 1 + 4.22iT - 5T^{2} \)
11 \( 1 + 2.60iT - 11T^{2} \)
17 \( 1 - 2.56T + 17T^{2} \)
19 \( 1 + 3.60iT - 19T^{2} \)
23 \( 1 - 3.61T + 23T^{2} \)
29 \( 1 + 8.03T + 29T^{2} \)
31 \( 1 + 1.56iT - 31T^{2} \)
37 \( 1 - 3.84iT - 37T^{2} \)
41 \( 1 + 3.79iT - 41T^{2} \)
43 \( 1 + 0.419T + 43T^{2} \)
47 \( 1 + 10.6iT - 47T^{2} \)
53 \( 1 - 6.63T + 53T^{2} \)
59 \( 1 + 0.165iT - 59T^{2} \)
61 \( 1 + 13.0T + 61T^{2} \)
67 \( 1 - 4.65iT - 67T^{2} \)
71 \( 1 - 7.64iT - 71T^{2} \)
73 \( 1 - 0.188iT - 73T^{2} \)
79 \( 1 + 14.6T + 79T^{2} \)
83 \( 1 - 2.30iT - 83T^{2} \)
89 \( 1 + 9.22iT - 89T^{2} \)
97 \( 1 - 19.0iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15092903773176590857419901961, −9.158489568709954014871497880848, −8.464260440662457754590894665139, −7.30102396469954169671093462013, −6.01067109770512307778148748916, −5.51971094617062513608846399375, −4.93089407597364307394795086989, −3.86648355927968578051906481274, −1.37873590570041759549903154318, −0.46850962627993191881430381618, 1.64060628642518175050684531396, 3.43791194376026823673403277593, 4.41755811186363659944553432966, 5.76285052575554788178243552633, 6.25753955601354429382875670380, 7.14791282695791093599079855834, 7.55092302896183672916571618422, 9.555086506906478718359074508888, 10.26134923358785840702410502364, 10.91273794285456712593301841100

Graph of the $Z$-function along the critical line