L(s) = 1 | + (−1.29 − 0.562i)2-s + 3.37i·3-s + (1.36 + 1.45i)4-s + 0.523·5-s + (1.89 − 4.37i)6-s + (2.30 − 1.29i)7-s + (−0.954 − 2.66i)8-s − 8.38·9-s + (−0.679 − 0.294i)10-s + 1.78·11-s + (−4.92 + 4.61i)12-s + 13-s + (−3.72 + 0.377i)14-s + 1.76i·15-s + (−0.258 + 3.99i)16-s + 5.95i·17-s + ⋯ |
L(s) = 1 | + (−0.917 − 0.397i)2-s + 1.94i·3-s + (0.683 + 0.729i)4-s + 0.234·5-s + (0.774 − 1.78i)6-s + (0.872 − 0.488i)7-s + (−0.337 − 0.941i)8-s − 2.79·9-s + (−0.214 − 0.0931i)10-s + 0.536·11-s + (−1.42 + 1.33i)12-s + 0.277·13-s + (−0.994 + 0.100i)14-s + 0.456i·15-s + (−0.0645 + 0.997i)16-s + 1.44i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.754 - 0.656i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.754 - 0.656i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.334055 + 0.892126i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.334055 + 0.892126i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.29 + 0.562i)T \) |
| 7 | \( 1 + (-2.30 + 1.29i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 - 3.37iT - 3T^{2} \) |
| 5 | \( 1 - 0.523T + 5T^{2} \) |
| 11 | \( 1 - 1.78T + 11T^{2} \) |
| 17 | \( 1 - 5.95iT - 17T^{2} \) |
| 19 | \( 1 - 1.23iT - 19T^{2} \) |
| 23 | \( 1 - 6.84iT - 23T^{2} \) |
| 29 | \( 1 - 8.12iT - 29T^{2} \) |
| 31 | \( 1 + 2.22T + 31T^{2} \) |
| 37 | \( 1 + 8.61iT - 37T^{2} \) |
| 41 | \( 1 - 5.57iT - 41T^{2} \) |
| 43 | \( 1 + 4.02T + 43T^{2} \) |
| 47 | \( 1 + 5.78T + 47T^{2} \) |
| 53 | \( 1 - 1.99iT - 53T^{2} \) |
| 59 | \( 1 + 3.68iT - 59T^{2} \) |
| 61 | \( 1 - 11.6T + 61T^{2} \) |
| 67 | \( 1 - 3.23T + 67T^{2} \) |
| 71 | \( 1 - 0.681iT - 71T^{2} \) |
| 73 | \( 1 - 2.59iT - 73T^{2} \) |
| 79 | \( 1 + 6.79iT - 79T^{2} \) |
| 83 | \( 1 + 9.47iT - 83T^{2} \) |
| 89 | \( 1 + 1.03iT - 89T^{2} \) |
| 97 | \( 1 - 12.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52656807820387128577381208831, −9.980332431516664611881584018862, −9.161492965955877004884176719887, −8.530701834116668292798816343552, −7.68233206400123891437803973531, −6.18393992764448811141545517381, −5.19017822540755352576002620029, −3.92115993250340006082661830171, −3.52759451444018632311415522966, −1.75794343652850009730548865415,
0.66724463949675644864547567942, 1.87103554143752395484047552972, 2.61945371436118391062461848466, 5.10808025704078730144008992626, 6.05408198166534102173735658905, 6.71783884220573898912970998817, 7.50011772834773109913826632202, 8.285078064272346600687068484897, 8.771824017281458048167217944604, 9.837502086113228019893892080076