L(s) = 1 | + (0.906 + 1.08i)2-s − 1.31i·3-s + (−0.354 + 1.96i)4-s − 2.82·5-s + (1.42 − 1.19i)6-s + (−0.786 − 2.52i)7-s + (−2.45 + 1.39i)8-s + 1.27·9-s + (−2.56 − 3.06i)10-s + 3.42·11-s + (2.58 + 0.465i)12-s + 13-s + (2.02 − 3.14i)14-s + 3.70i·15-s + (−3.74 − 1.39i)16-s − 3.79i·17-s + ⋯ |
L(s) = 1 | + (0.641 + 0.767i)2-s − 0.757i·3-s + (−0.177 + 0.984i)4-s − 1.26·5-s + (0.581 − 0.486i)6-s + (−0.297 − 0.954i)7-s + (−0.868 + 0.494i)8-s + 0.425·9-s + (−0.809 − 0.968i)10-s + 1.03·11-s + (0.745 + 0.134i)12-s + 0.277·13-s + (0.542 − 0.840i)14-s + 0.957i·15-s + (−0.937 − 0.349i)16-s − 0.921i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.730 + 0.682i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.730 + 0.682i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.41383 - 0.557544i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.41383 - 0.557544i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.906 - 1.08i)T \) |
| 7 | \( 1 + (0.786 + 2.52i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + 1.31iT - 3T^{2} \) |
| 5 | \( 1 + 2.82T + 5T^{2} \) |
| 11 | \( 1 - 3.42T + 11T^{2} \) |
| 17 | \( 1 + 3.79iT - 17T^{2} \) |
| 19 | \( 1 + 2.36iT - 19T^{2} \) |
| 23 | \( 1 + 8.79iT - 23T^{2} \) |
| 29 | \( 1 + 2.31iT - 29T^{2} \) |
| 31 | \( 1 - 5.89T + 31T^{2} \) |
| 37 | \( 1 + 1.36iT - 37T^{2} \) |
| 41 | \( 1 - 0.250iT - 41T^{2} \) |
| 43 | \( 1 + 7.71T + 43T^{2} \) |
| 47 | \( 1 - 12.7T + 47T^{2} \) |
| 53 | \( 1 - 8.36iT - 53T^{2} \) |
| 59 | \( 1 - 13.5iT - 59T^{2} \) |
| 61 | \( 1 + 9.02T + 61T^{2} \) |
| 67 | \( 1 + 2.61T + 67T^{2} \) |
| 71 | \( 1 - 4.45iT - 71T^{2} \) |
| 73 | \( 1 + 2.04iT - 73T^{2} \) |
| 79 | \( 1 - 0.539iT - 79T^{2} \) |
| 83 | \( 1 - 5.73iT - 83T^{2} \) |
| 89 | \( 1 + 6.16iT - 89T^{2} \) |
| 97 | \( 1 + 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40923797427717095370170797112, −9.096202950942069382821936841916, −8.211335693339596959526674950603, −7.37081562039949623906293342588, −6.94495850382464076799996220861, −6.20700239659605175873705312721, −4.40899385402782551674176507403, −4.21770744314606890786150583430, −2.89871362110773356080856125894, −0.69317137982342581489233853342,
1.60102511677418545097692381468, 3.42428451669198087276287479542, 3.77053424725992688455321707899, 4.75062313170815888031979154971, 5.79733416031683538912929024013, 6.78769544701681061497829148084, 8.113268745168675462800996713871, 9.084295915153068337998888918774, 9.729272982208979789314708241449, 10.62700637710813719233660646750