L(s) = 1 | + (−1.39 − 0.227i)2-s − 1.35i·3-s + (1.89 + 0.635i)4-s − 2.01·5-s + (−0.308 + 1.89i)6-s + (2.18 − 1.49i)7-s + (−2.50 − 1.31i)8-s + 1.16·9-s + (2.81 + 0.458i)10-s − 4.92·11-s + (0.861 − 2.57i)12-s + 13-s + (−3.38 + 1.58i)14-s + 2.73i·15-s + (3.19 + 2.40i)16-s − 4.50i·17-s + ⋯ |
L(s) = 1 | + (−0.986 − 0.160i)2-s − 0.783i·3-s + (0.948 + 0.317i)4-s − 0.902·5-s + (−0.125 + 0.772i)6-s + (0.825 − 0.563i)7-s + (−0.884 − 0.465i)8-s + 0.386·9-s + (0.890 + 0.145i)10-s − 1.48·11-s + (0.248 − 0.742i)12-s + 0.277·13-s + (−0.905 + 0.423i)14-s + 0.706i·15-s + (0.798 + 0.602i)16-s − 1.09i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 + 0.113i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.993 + 0.113i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0284796 - 0.498299i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0284796 - 0.498299i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 + 0.227i)T \) |
| 7 | \( 1 + (-2.18 + 1.49i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + 1.35iT - 3T^{2} \) |
| 5 | \( 1 + 2.01T + 5T^{2} \) |
| 11 | \( 1 + 4.92T + 11T^{2} \) |
| 17 | \( 1 + 4.50iT - 17T^{2} \) |
| 19 | \( 1 + 4.26iT - 19T^{2} \) |
| 23 | \( 1 - 9.28iT - 23T^{2} \) |
| 29 | \( 1 + 6.03iT - 29T^{2} \) |
| 31 | \( 1 + 2.67T + 31T^{2} \) |
| 37 | \( 1 - 1.91iT - 37T^{2} \) |
| 41 | \( 1 + 9.84iT - 41T^{2} \) |
| 43 | \( 1 + 1.98T + 43T^{2} \) |
| 47 | \( 1 + 6.61T + 47T^{2} \) |
| 53 | \( 1 - 7.90iT - 53T^{2} \) |
| 59 | \( 1 - 9.77iT - 59T^{2} \) |
| 61 | \( 1 + 10.0T + 61T^{2} \) |
| 67 | \( 1 + 15.8T + 67T^{2} \) |
| 71 | \( 1 - 2.17iT - 71T^{2} \) |
| 73 | \( 1 - 7.87iT - 73T^{2} \) |
| 79 | \( 1 + 6.79iT - 79T^{2} \) |
| 83 | \( 1 + 15.5iT - 83T^{2} \) |
| 89 | \( 1 + 5.33iT - 89T^{2} \) |
| 97 | \( 1 - 5.40iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05610496570334576420210931176, −9.011780923688937825313353580360, −7.903929192716763075407409654984, −7.54915382756381218996124997889, −7.12728322046436340411715721402, −5.63620427624988253548338137707, −4.36000048247686737286947230699, −2.99224809967486866202696192118, −1.71165811173754747403139438039, −0.35051623320574303605017517357,
1.78879211337411334562441706347, 3.22066383026715173980426037439, 4.49402356974667769108442038946, 5.41094598408980852751164205708, 6.55513924700156091832343224030, 7.955365942039305729138940799611, 8.027582019057267988943071330822, 8.978366636383447135070624087780, 10.12109627150974942322234034523, 10.65109696320304707746709653744