L(s) = 1 | + (−0.172 − 1.40i)2-s + 3.03i·3-s + (−1.94 + 0.483i)4-s + 0.163·5-s + (4.26 − 0.522i)6-s + (−0.919 + 2.48i)7-s + (1.01 + 2.64i)8-s − 6.21·9-s + (−0.0282 − 0.230i)10-s − 4.50·11-s + (−1.46 − 5.89i)12-s + 13-s + (3.64 + 0.862i)14-s + 0.497i·15-s + (3.53 − 1.87i)16-s − 3.02i·17-s + ⋯ |
L(s) = 1 | + (−0.121 − 0.992i)2-s + 1.75i·3-s + (−0.970 + 0.241i)4-s + 0.0732·5-s + (1.73 − 0.213i)6-s + (−0.347 + 0.937i)7-s + (0.358 + 0.933i)8-s − 2.07·9-s + (−0.00893 − 0.0727i)10-s − 1.35·11-s + (−0.423 − 1.70i)12-s + 0.277·13-s + (0.973 + 0.230i)14-s + 0.128i·15-s + (0.883 − 0.469i)16-s − 0.733i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0115i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0115i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00203887 - 0.352005i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00203887 - 0.352005i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.172 + 1.40i)T \) |
| 7 | \( 1 + (0.919 - 2.48i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 - 3.03iT - 3T^{2} \) |
| 5 | \( 1 - 0.163T + 5T^{2} \) |
| 11 | \( 1 + 4.50T + 11T^{2} \) |
| 17 | \( 1 + 3.02iT - 17T^{2} \) |
| 19 | \( 1 + 4.28iT - 19T^{2} \) |
| 23 | \( 1 - 4.64iT - 23T^{2} \) |
| 29 | \( 1 + 2.17iT - 29T^{2} \) |
| 31 | \( 1 - 8.62T + 31T^{2} \) |
| 37 | \( 1 + 9.21iT - 37T^{2} \) |
| 41 | \( 1 - 6.42iT - 41T^{2} \) |
| 43 | \( 1 + 7.59T + 43T^{2} \) |
| 47 | \( 1 + 2.11T + 47T^{2} \) |
| 53 | \( 1 - 2.63iT - 53T^{2} \) |
| 59 | \( 1 - 13.3iT - 59T^{2} \) |
| 61 | \( 1 + 13.7T + 61T^{2} \) |
| 67 | \( 1 + 11.5T + 67T^{2} \) |
| 71 | \( 1 + 0.950iT - 71T^{2} \) |
| 73 | \( 1 - 0.307iT - 73T^{2} \) |
| 79 | \( 1 - 13.7iT - 79T^{2} \) |
| 83 | \( 1 - 1.24iT - 83T^{2} \) |
| 89 | \( 1 - 14.7iT - 89T^{2} \) |
| 97 | \( 1 + 7.58iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71166273802645235674955093074, −9.922139180724897976480903498235, −9.443778740268592850478549255510, −8.734930134131271687753653268141, −7.82120195756816816256328415303, −5.83653141042706528959805670390, −5.14438166575038685126562374065, −4.37481660527341540811417118851, −3.16077810754100757018738334924, −2.56054578320192019404468446356,
0.18639047892101724612361073473, 1.60481610572790130707583390295, 3.25679552393468688023774932362, 4.75941902910721890853041454646, 6.03448341632567432213527241825, 6.44579600917997379046168037611, 7.40808845091612103040433739897, 8.024138373436857710141152972749, 8.479990381023896447682722379850, 10.01076105053546308271257935492