L(s) = 1 | + (−0.264 + 1.38i)2-s − 1.53i·3-s + (−1.85 − 0.735i)4-s − 0.856·5-s + (2.12 + 0.405i)6-s + (−1.33 + 2.28i)7-s + (1.51 − 2.38i)8-s + 0.649·9-s + (0.226 − 1.18i)10-s − 0.850·11-s + (−1.12 + 2.85i)12-s + 13-s + (−2.82 − 2.45i)14-s + 1.31i·15-s + (2.91 + 2.73i)16-s − 5.95i·17-s + ⋯ |
L(s) = 1 | + (−0.187 + 0.982i)2-s − 0.885i·3-s + (−0.929 − 0.367i)4-s − 0.382·5-s + (0.869 + 0.165i)6-s + (−0.504 + 0.863i)7-s + (0.535 − 0.844i)8-s + 0.216·9-s + (0.0716 − 0.376i)10-s − 0.256·11-s + (−0.325 + 0.823i)12-s + 0.277·13-s + (−0.754 − 0.656i)14-s + 0.338i·15-s + (0.729 + 0.684i)16-s − 1.44i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.459 + 0.888i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.459 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.683914 - 0.416122i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.683914 - 0.416122i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.264 - 1.38i)T \) |
| 7 | \( 1 + (1.33 - 2.28i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + 1.53iT - 3T^{2} \) |
| 5 | \( 1 + 0.856T + 5T^{2} \) |
| 11 | \( 1 + 0.850T + 11T^{2} \) |
| 17 | \( 1 + 5.95iT - 17T^{2} \) |
| 19 | \( 1 + 3.06iT - 19T^{2} \) |
| 23 | \( 1 - 1.93iT - 23T^{2} \) |
| 29 | \( 1 + 6.57iT - 29T^{2} \) |
| 31 | \( 1 + 2.27T + 31T^{2} \) |
| 37 | \( 1 + 7.65iT - 37T^{2} \) |
| 41 | \( 1 + 2.12iT - 41T^{2} \) |
| 43 | \( 1 - 2.48T + 43T^{2} \) |
| 47 | \( 1 - 3.71T + 47T^{2} \) |
| 53 | \( 1 + 8.57iT - 53T^{2} \) |
| 59 | \( 1 + 8.59iT - 59T^{2} \) |
| 61 | \( 1 - 0.283T + 61T^{2} \) |
| 67 | \( 1 - 1.93T + 67T^{2} \) |
| 71 | \( 1 - 7.94iT - 71T^{2} \) |
| 73 | \( 1 + 3.38iT - 73T^{2} \) |
| 79 | \( 1 + 2.46iT - 79T^{2} \) |
| 83 | \( 1 - 15.7iT - 83T^{2} \) |
| 89 | \( 1 - 11.1iT - 89T^{2} \) |
| 97 | \( 1 + 8.18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.814316340046988070716380962384, −9.294007692208010655446004896672, −8.289647369202735052572324171981, −7.50737705465163945057875906123, −6.89216784707191608697350268557, −5.98392542806952933102074877025, −5.12785396679406941558460877718, −3.86365416764677367968916541109, −2.30950232170116654098343953876, −0.47204907334760575513965608548,
1.46557661774058994003006631175, 3.24920600115340205334574485419, 3.93738505324698094792775871626, 4.59182172361865799279948164746, 5.91544883449000951295101106473, 7.29984282848419798808295042243, 8.198005567777863371319434966848, 9.092035044146208420804291377732, 10.02588922491495121665235669313, 10.47053937430857961482591999953