L(s) = 1 | + (−0.635 − 1.26i)2-s + 1.40i·3-s + (−1.19 + 1.60i)4-s + 3.11·5-s + (1.77 − 0.891i)6-s + (2.64 − 0.0479i)7-s + (2.78 + 0.485i)8-s + 1.02·9-s + (−1.97 − 3.93i)10-s − 0.711·11-s + (−2.25 − 1.67i)12-s + 13-s + (−1.74 − 3.31i)14-s + 4.37i·15-s + (−1.15 − 3.82i)16-s − 0.128i·17-s + ⋯ |
L(s) = 1 | + (−0.449 − 0.893i)2-s + 0.810i·3-s + (−0.596 + 0.802i)4-s + 1.39·5-s + (0.723 − 0.364i)6-s + (0.999 − 0.0181i)7-s + (0.985 + 0.171i)8-s + 0.343·9-s + (−0.625 − 1.24i)10-s − 0.214·11-s + (−0.650 − 0.483i)12-s + 0.277·13-s + (−0.465 − 0.885i)14-s + 1.12i·15-s + (−0.289 − 0.957i)16-s − 0.0310i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.153i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69223 - 0.131020i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69223 - 0.131020i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.635 + 1.26i)T \) |
| 7 | \( 1 + (-2.64 + 0.0479i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 - 1.40iT - 3T^{2} \) |
| 5 | \( 1 - 3.11T + 5T^{2} \) |
| 11 | \( 1 + 0.711T + 11T^{2} \) |
| 17 | \( 1 + 0.128iT - 17T^{2} \) |
| 19 | \( 1 + 5.49iT - 19T^{2} \) |
| 23 | \( 1 - 5.12iT - 23T^{2} \) |
| 29 | \( 1 + 7.07iT - 29T^{2} \) |
| 31 | \( 1 + 10.3T + 31T^{2} \) |
| 37 | \( 1 - 8.15iT - 37T^{2} \) |
| 41 | \( 1 + 0.100iT - 41T^{2} \) |
| 43 | \( 1 - 8.73T + 43T^{2} \) |
| 47 | \( 1 + 2.81T + 47T^{2} \) |
| 53 | \( 1 + 8.53iT - 53T^{2} \) |
| 59 | \( 1 + 7.38iT - 59T^{2} \) |
| 61 | \( 1 - 11.3T + 61T^{2} \) |
| 67 | \( 1 + 14.5T + 67T^{2} \) |
| 71 | \( 1 - 8.43iT - 71T^{2} \) |
| 73 | \( 1 + 8.62iT - 73T^{2} \) |
| 79 | \( 1 - 16.3iT - 79T^{2} \) |
| 83 | \( 1 + 4.06iT - 83T^{2} \) |
| 89 | \( 1 - 2.25iT - 89T^{2} \) |
| 97 | \( 1 - 5.13iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32128891351991935880085631211, −9.554255154762058391203395939307, −9.151561308300013576643119677676, −8.077398832162350366971149980310, −7.03735854023169567718478687558, −5.52259507041689550489360499568, −4.83956061766999510086533102571, −3.80953082137758215725618791298, −2.42415507323884816523526320130, −1.44817640454258393803791237819,
1.34132448403182991316103897792, 2.05410617923692820792729186959, 4.28542857693724741500168623498, 5.50675312765070196914873712143, 5.95423511497639713895445727838, 7.04225924021755817987532774261, 7.66370828790726998210610401109, 8.636962498291762484914825108883, 9.332720939500369112520945475237, 10.40605923157983865083110743262