L(s) = 1 | + (−1.10 + 0.887i)2-s + 0.140i·3-s + (0.424 − 1.95i)4-s + 0.986·5-s + (−0.124 − 0.154i)6-s + (1.39 − 2.24i)7-s + (1.26 + 2.52i)8-s + 2.98·9-s + (−1.08 + 0.875i)10-s − 1.55·11-s + (0.273 + 0.0595i)12-s + 13-s + (0.459 + 3.71i)14-s + 0.138i·15-s + (−3.63 − 1.66i)16-s + 4.36i·17-s + ⋯ |
L(s) = 1 | + (−0.778 + 0.627i)2-s + 0.0809i·3-s + (0.212 − 0.977i)4-s + 0.441·5-s + (−0.0507 − 0.0630i)6-s + (0.527 − 0.849i)7-s + (0.447 + 0.894i)8-s + 0.993·9-s + (−0.343 + 0.276i)10-s − 0.469·11-s + (0.0790 + 0.0171i)12-s + 0.277·13-s + (0.122 + 0.992i)14-s + 0.0357i·15-s + (−0.909 − 0.415i)16-s + 1.05i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24027 - 0.0564528i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24027 - 0.0564528i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.10 - 0.887i)T \) |
| 7 | \( 1 + (-1.39 + 2.24i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 - 0.140iT - 3T^{2} \) |
| 5 | \( 1 - 0.986T + 5T^{2} \) |
| 11 | \( 1 + 1.55T + 11T^{2} \) |
| 17 | \( 1 - 4.36iT - 17T^{2} \) |
| 19 | \( 1 + 7.69iT - 19T^{2} \) |
| 23 | \( 1 + 2.65iT - 23T^{2} \) |
| 29 | \( 1 + 5.33iT - 29T^{2} \) |
| 31 | \( 1 - 9.27T + 31T^{2} \) |
| 37 | \( 1 - 0.0671iT - 37T^{2} \) |
| 41 | \( 1 - 5.51iT - 41T^{2} \) |
| 43 | \( 1 + 5.43T + 43T^{2} \) |
| 47 | \( 1 - 6.75T + 47T^{2} \) |
| 53 | \( 1 + 3.62iT - 53T^{2} \) |
| 59 | \( 1 - 4.10iT - 59T^{2} \) |
| 61 | \( 1 - 8.11T + 61T^{2} \) |
| 67 | \( 1 - 5.12T + 67T^{2} \) |
| 71 | \( 1 - 1.96iT - 71T^{2} \) |
| 73 | \( 1 - 3.52iT - 73T^{2} \) |
| 79 | \( 1 + 9.12iT - 79T^{2} \) |
| 83 | \( 1 - 5.07iT - 83T^{2} \) |
| 89 | \( 1 - 1.10iT - 89T^{2} \) |
| 97 | \( 1 - 10.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21300586945396416977634813722, −9.661316540217012933074022803625, −8.511610530134139379920542202446, −7.85313344798765492061244068843, −6.93258684869463681723060141230, −6.24519669543334160886750153564, −4.99383737780306192443614744977, −4.21303965682666126476598571552, −2.25772843672368228822759666935, −0.960646908982586775750497284472,
1.40815057736247320862987367094, 2.36206708161797591877464755395, 3.65236818659120883402013284053, 4.91335901599997854809461986552, 6.02332275039422254080743679820, 7.20934190168353736019617068996, 7.982885405792476974353935526514, 8.761153041055879518195088102629, 9.776279027039050551644114999881, 10.14919049511641900189886831067