L(s) = 1 | + (−0.635 + 1.26i)2-s + 1.40i·3-s + (−1.19 − 1.60i)4-s − 3.11·5-s + (−1.77 − 0.891i)6-s + (−2.64 + 0.0479i)7-s + (2.78 − 0.485i)8-s + 1.02·9-s + (1.97 − 3.93i)10-s − 0.711·11-s + (2.25 − 1.67i)12-s − 13-s + (1.62 − 3.37i)14-s − 4.37i·15-s + (−1.15 + 3.82i)16-s − 0.128i·17-s + ⋯ |
L(s) = 1 | + (−0.449 + 0.893i)2-s + 0.810i·3-s + (−0.596 − 0.802i)4-s − 1.39·5-s + (−0.723 − 0.364i)6-s + (−0.999 + 0.0181i)7-s + (0.985 − 0.171i)8-s + 0.343·9-s + (0.625 − 1.24i)10-s − 0.214·11-s + (0.650 − 0.483i)12-s − 0.277·13-s + (0.433 − 0.901i)14-s − 1.12i·15-s + (−0.289 + 0.957i)16-s − 0.0310i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 - 0.189i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 - 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.523813 + 0.0501272i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.523813 + 0.0501272i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.635 - 1.26i)T \) |
| 7 | \( 1 + (2.64 - 0.0479i)T \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 - 1.40iT - 3T^{2} \) |
| 5 | \( 1 + 3.11T + 5T^{2} \) |
| 11 | \( 1 + 0.711T + 11T^{2} \) |
| 17 | \( 1 + 0.128iT - 17T^{2} \) |
| 19 | \( 1 + 5.49iT - 19T^{2} \) |
| 23 | \( 1 + 5.12iT - 23T^{2} \) |
| 29 | \( 1 - 7.07iT - 29T^{2} \) |
| 31 | \( 1 - 10.3T + 31T^{2} \) |
| 37 | \( 1 + 8.15iT - 37T^{2} \) |
| 41 | \( 1 + 0.100iT - 41T^{2} \) |
| 43 | \( 1 - 8.73T + 43T^{2} \) |
| 47 | \( 1 - 2.81T + 47T^{2} \) |
| 53 | \( 1 - 8.53iT - 53T^{2} \) |
| 59 | \( 1 + 7.38iT - 59T^{2} \) |
| 61 | \( 1 + 11.3T + 61T^{2} \) |
| 67 | \( 1 + 14.5T + 67T^{2} \) |
| 71 | \( 1 + 8.43iT - 71T^{2} \) |
| 73 | \( 1 + 8.62iT - 73T^{2} \) |
| 79 | \( 1 + 16.3iT - 79T^{2} \) |
| 83 | \( 1 + 4.06iT - 83T^{2} \) |
| 89 | \( 1 - 2.25iT - 89T^{2} \) |
| 97 | \( 1 - 5.13iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48059343420603042361065265143, −9.268898905502613261212751395626, −8.894096720049138774646538884818, −7.67224921664508597346483910215, −7.11907662138836292627488154666, −6.16779233951340988595044603954, −4.75907084064137548826642396225, −4.29933288772756452551461540373, −3.08044860115890602678255433915, −0.41239964165076010099874036210,
1.02288293342969753384450306412, 2.61558401645231151295028446000, 3.68221927083336330811137543642, 4.43806980683886311607802146050, 6.14161839848179478182613806025, 7.30362063841989926656156603107, 7.77708595675323244737878693292, 8.516074279242386668503925395173, 9.796357733029774951006975292259, 10.20838542305102918196075802623