L(s) = 1 | + (−0.879 + 1.10i)2-s − 1.92i·3-s + (−0.453 − 1.94i)4-s − 2.16·5-s + (2.13 + 1.69i)6-s + (1.74 + 1.99i)7-s + (2.55 + 1.20i)8-s − 0.716·9-s + (1.90 − 2.40i)10-s − 5.04·11-s + (−3.75 + 0.875i)12-s − 13-s + (−3.73 + 0.175i)14-s + 4.17i·15-s + (−3.58 + 1.76i)16-s − 0.687i·17-s + ⋯ |
L(s) = 1 | + (−0.621 + 0.783i)2-s − 1.11i·3-s + (−0.226 − 0.973i)4-s − 0.969·5-s + (0.871 + 0.691i)6-s + (0.657 + 0.753i)7-s + (0.903 + 0.427i)8-s − 0.238·9-s + (0.602 − 0.758i)10-s − 1.52·11-s + (−1.08 + 0.252i)12-s − 0.277·13-s + (−0.998 + 0.0467i)14-s + 1.07i·15-s + (−0.896 + 0.442i)16-s − 0.166i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.272 - 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.272 - 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.313097 + 0.413991i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.313097 + 0.413991i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.879 - 1.10i)T \) |
| 7 | \( 1 + (-1.74 - 1.99i)T \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 + 1.92iT - 3T^{2} \) |
| 5 | \( 1 + 2.16T + 5T^{2} \) |
| 11 | \( 1 + 5.04T + 11T^{2} \) |
| 17 | \( 1 + 0.687iT - 17T^{2} \) |
| 19 | \( 1 - 1.09iT - 19T^{2} \) |
| 23 | \( 1 - 3.80iT - 23T^{2} \) |
| 29 | \( 1 - 6.62iT - 29T^{2} \) |
| 31 | \( 1 - 8.65T + 31T^{2} \) |
| 37 | \( 1 - 9.25iT - 37T^{2} \) |
| 41 | \( 1 - 6.30iT - 41T^{2} \) |
| 43 | \( 1 + 3.27T + 43T^{2} \) |
| 47 | \( 1 + 2.09T + 47T^{2} \) |
| 53 | \( 1 - 2.89iT - 53T^{2} \) |
| 59 | \( 1 - 11.6iT - 59T^{2} \) |
| 61 | \( 1 + 1.96T + 61T^{2} \) |
| 67 | \( 1 - 13.5T + 67T^{2} \) |
| 71 | \( 1 + 5.07iT - 71T^{2} \) |
| 73 | \( 1 + 2.08iT - 73T^{2} \) |
| 79 | \( 1 - 0.772iT - 79T^{2} \) |
| 83 | \( 1 - 5.41iT - 83T^{2} \) |
| 89 | \( 1 + 3.65iT - 89T^{2} \) |
| 97 | \( 1 + 2.48iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58373597972305516162243942562, −9.658203704439999552276197716875, −8.318203440289012057093542626195, −8.068125848680567315201490669127, −7.41588270652621141302907985277, −6.52407685504764355132686393953, −5.42619057806703177751876605847, −4.64191208908345333248339949803, −2.70048102153140039854288844008, −1.36079035225726053083128078449,
0.35152070867924025116095917506, 2.41000445263350574469010040339, 3.68927245939636919053781137861, 4.36212534128566933258694178682, 5.09853364778899673203416763914, 7.05456225432691615884664765394, 7.954439873454884786737092389634, 8.326212536037217435835841431383, 9.615564056641862873902948102689, 10.25649676463934081390671315587