L(s) = 1 | + (−1.34 − 0.446i)2-s − 2.10i·3-s + (1.60 + 1.19i)4-s + 0.418i·5-s + (−0.938 + 2.81i)6-s + 7-s + (−1.61 − 2.32i)8-s − 1.41·9-s + (0.187 − 0.561i)10-s − 0.137i·11-s + (2.51 − 3.36i)12-s − i·13-s + (−1.34 − 0.446i)14-s + 0.879·15-s + (1.12 + 3.83i)16-s − 6.25·17-s + ⋯ |
L(s) = 1 | + (−0.948 − 0.316i)2-s − 1.21i·3-s + (0.800 + 0.599i)4-s + 0.187i·5-s + (−0.383 + 1.15i)6-s + 0.377·7-s + (−0.569 − 0.821i)8-s − 0.470·9-s + (0.0591 − 0.177i)10-s − 0.0415i·11-s + (0.727 − 0.970i)12-s − 0.277i·13-s + (−0.358 − 0.119i)14-s + 0.227·15-s + (0.280 + 0.959i)16-s − 1.51·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.821 + 0.569i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.821 + 0.569i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.255166 - 0.815853i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.255166 - 0.815853i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.34 + 0.446i)T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 + 2.10iT - 3T^{2} \) |
| 5 | \( 1 - 0.418iT - 5T^{2} \) |
| 11 | \( 1 + 0.137iT - 11T^{2} \) |
| 17 | \( 1 + 6.25T + 17T^{2} \) |
| 19 | \( 1 + 4.70iT - 19T^{2} \) |
| 23 | \( 1 - 3.85T + 23T^{2} \) |
| 29 | \( 1 + 8.75iT - 29T^{2} \) |
| 31 | \( 1 + 0.493T + 31T^{2} \) |
| 37 | \( 1 + 3.24iT - 37T^{2} \) |
| 41 | \( 1 + 11.6T + 41T^{2} \) |
| 43 | \( 1 + 4.67iT - 43T^{2} \) |
| 47 | \( 1 - 8.38T + 47T^{2} \) |
| 53 | \( 1 + 4.31iT - 53T^{2} \) |
| 59 | \( 1 - 11.5iT - 59T^{2} \) |
| 61 | \( 1 - 4.80iT - 61T^{2} \) |
| 67 | \( 1 + 2.86iT - 67T^{2} \) |
| 71 | \( 1 + 11.2T + 71T^{2} \) |
| 73 | \( 1 + 11.9T + 73T^{2} \) |
| 79 | \( 1 - 3.44T + 79T^{2} \) |
| 83 | \( 1 - 5.29iT - 83T^{2} \) |
| 89 | \( 1 + 6.80T + 89T^{2} \) |
| 97 | \( 1 - 5.29T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11375158945689017888124398565, −8.890520925109126675431025667002, −8.478320662056516385804910860157, −7.23411160540348331804956551405, −7.04788827175163051908192929156, −6.00454291553723017964477921088, −4.43759324661922090133086309646, −2.81422762969585004009548374798, −1.96093526764085400362748341092, −0.60805307198913000519759230178,
1.61717247501762645345673488341, 3.19077671086222038702624557055, 4.55912098669622844367318858393, 5.24031405832208135516223725323, 6.49927429956126267939398844914, 7.32527036704899549110081820675, 8.635767181584400054813890559696, 8.897031157639801983788953660996, 9.850706009681467950895685024065, 10.63102300661842316266272029706