L(s) = 1 | + (−1.11 + 0.870i)2-s + 2.73i·3-s + (0.484 − 1.94i)4-s − 4.29i·5-s + (−2.37 − 3.04i)6-s − 7-s + (1.14 + 2.58i)8-s − 4.46·9-s + (3.73 + 4.78i)10-s + 3.63i·11-s + (5.30 + 1.32i)12-s − i·13-s + (1.11 − 0.870i)14-s + 11.7·15-s + (−3.53 − 1.88i)16-s − 1.14·17-s + ⋯ |
L(s) = 1 | + (−0.788 + 0.615i)2-s + 1.57i·3-s + (0.242 − 0.970i)4-s − 1.91i·5-s + (−0.971 − 1.24i)6-s − 0.377·7-s + (0.406 + 0.913i)8-s − 1.48·9-s + (1.18 + 1.51i)10-s + 1.09i·11-s + (1.53 + 0.382i)12-s − 0.277i·13-s + (0.297 − 0.232i)14-s + 3.02·15-s + (−0.882 − 0.470i)16-s − 0.277·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.913 + 0.406i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0706411 - 0.332733i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0706411 - 0.332733i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.11 - 0.870i)T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 - 2.73iT - 3T^{2} \) |
| 5 | \( 1 + 4.29iT - 5T^{2} \) |
| 11 | \( 1 - 3.63iT - 11T^{2} \) |
| 17 | \( 1 + 1.14T + 17T^{2} \) |
| 19 | \( 1 - 5.50iT - 19T^{2} \) |
| 23 | \( 1 + 7.34T + 23T^{2} \) |
| 29 | \( 1 - 2.77iT - 29T^{2} \) |
| 31 | \( 1 - 0.223T + 31T^{2} \) |
| 37 | \( 1 - 8.95iT - 37T^{2} \) |
| 41 | \( 1 + 1.86T + 41T^{2} \) |
| 43 | \( 1 + 0.422iT - 43T^{2} \) |
| 47 | \( 1 + 12.9T + 47T^{2} \) |
| 53 | \( 1 + 5.01iT - 53T^{2} \) |
| 59 | \( 1 + 1.07iT - 59T^{2} \) |
| 61 | \( 1 + 4.56iT - 61T^{2} \) |
| 67 | \( 1 - 9.43iT - 67T^{2} \) |
| 71 | \( 1 + 2.96T + 71T^{2} \) |
| 73 | \( 1 - 2.96T + 73T^{2} \) |
| 79 | \( 1 - 7.12T + 79T^{2} \) |
| 83 | \( 1 - 5.14iT - 83T^{2} \) |
| 89 | \( 1 - 13.1T + 89T^{2} \) |
| 97 | \( 1 - 10.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16704041191328527028705770435, −9.938405207031451035300850812279, −9.292623816515941003706433360465, −8.449669804438134756631797489853, −7.904744281086111379076655781293, −6.30020433865962328955437306944, −5.28578580409542615982909106300, −4.76800740341403685744145105914, −3.86819065769789197440140931844, −1.70107637074253058606724973601,
0.21628791616696678178261996070, 2.04743099281767413898819442187, 2.75655780961247397482001197673, 3.68271032652571630132264165483, 6.20632878860080968341944965937, 6.50794655939671511013526844888, 7.40912057917286318380265513745, 7.927601385838734047865205874080, 9.011413915065937325363841784502, 10.07715837441819387023551818264