L(s) = 1 | + (0.961 − 1.03i)2-s − 0.167i·3-s + (−0.149 − 1.99i)4-s + 0.700i·5-s + (−0.174 − 0.161i)6-s − 7-s + (−2.21 − 1.76i)8-s + 2.97·9-s + (0.726 + 0.674i)10-s − 5.99i·11-s + (−0.334 + 0.0251i)12-s + i·13-s + (−0.961 + 1.03i)14-s + 0.117·15-s + (−3.95 + 0.596i)16-s − 6.07·17-s + ⋯ |
L(s) = 1 | + (0.680 − 0.733i)2-s − 0.0969i·3-s + (−0.0747 − 0.997i)4-s + 0.313i·5-s + (−0.0710 − 0.0659i)6-s − 0.377·7-s + (−0.781 − 0.623i)8-s + 0.990·9-s + (0.229 + 0.213i)10-s − 1.80i·11-s + (−0.0966 + 0.00724i)12-s + 0.277i·13-s + (−0.257 + 0.277i)14-s + 0.0303·15-s + (−0.988 + 0.149i)16-s − 1.47·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.623 + 0.781i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.623 + 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.844783 - 1.75407i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.844783 - 1.75407i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.961 + 1.03i)T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 + 0.167iT - 3T^{2} \) |
| 5 | \( 1 - 0.700iT - 5T^{2} \) |
| 11 | \( 1 + 5.99iT - 11T^{2} \) |
| 17 | \( 1 + 6.07T + 17T^{2} \) |
| 19 | \( 1 + 5.38iT - 19T^{2} \) |
| 23 | \( 1 - 6.63T + 23T^{2} \) |
| 29 | \( 1 - 1.72iT - 29T^{2} \) |
| 31 | \( 1 + 0.961T + 31T^{2} \) |
| 37 | \( 1 + 9.96iT - 37T^{2} \) |
| 41 | \( 1 + 11.6T + 41T^{2} \) |
| 43 | \( 1 - 1.29iT - 43T^{2} \) |
| 47 | \( 1 - 7.75T + 47T^{2} \) |
| 53 | \( 1 - 4.96iT - 53T^{2} \) |
| 59 | \( 1 - 0.526iT - 59T^{2} \) |
| 61 | \( 1 - 9.77iT - 61T^{2} \) |
| 67 | \( 1 - 10.9iT - 67T^{2} \) |
| 71 | \( 1 - 2.78T + 71T^{2} \) |
| 73 | \( 1 - 8.46T + 73T^{2} \) |
| 79 | \( 1 - 2.94T + 79T^{2} \) |
| 83 | \( 1 - 5.06iT - 83T^{2} \) |
| 89 | \( 1 - 6.28T + 89T^{2} \) |
| 97 | \( 1 - 10.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54240514251543731579418903524, −9.126117434295871822910170062080, −8.858595478067145037037441925290, −7.02810331965402196788005767794, −6.60143019706405223192976281677, −5.44456859933656216390998565068, −4.44123737964252316602556061993, −3.40956229466204613661299117196, −2.46933270312047696079794664492, −0.830087227141880809343139296873,
1.98959856827154455710165565898, 3.49507903960624433374664006428, 4.60807122521669917689991052658, 5.00009766018804031166941729288, 6.56598206300232719856665372927, 6.94301006353463034789256824598, 7.898190446203214302492480047606, 8.924848237593223760347406593634, 9.741724997643531309497736379976, 10.60204263549623807969410926385