L(s) = 1 | + (0.859 − 1.12i)2-s + 1.51i·3-s + (−0.522 − 1.93i)4-s + 3.25i·5-s + (1.69 + 1.29i)6-s − 7-s + (−2.61 − 1.07i)8-s + 0.713·9-s + (3.65 + 2.80i)10-s + 1.48i·11-s + (2.91 − 0.790i)12-s − i·13-s + (−0.859 + 1.12i)14-s − 4.92·15-s + (−3.45 + 2.01i)16-s + 0.428·17-s + ⋯ |
L(s) = 1 | + (0.607 − 0.794i)2-s + 0.873i·3-s + (−0.261 − 0.965i)4-s + 1.45i·5-s + (0.693 + 0.530i)6-s − 0.377·7-s + (−0.925 − 0.379i)8-s + 0.237·9-s + (1.15 + 0.885i)10-s + 0.447i·11-s + (0.842 − 0.228i)12-s − 0.277i·13-s + (−0.229 + 0.300i)14-s − 1.27·15-s + (−0.863 + 0.504i)16-s + 0.103·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.379 - 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.379 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42930 + 0.959026i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42930 + 0.959026i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.859 + 1.12i)T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 - 1.51iT - 3T^{2} \) |
| 5 | \( 1 - 3.25iT - 5T^{2} \) |
| 11 | \( 1 - 1.48iT - 11T^{2} \) |
| 17 | \( 1 - 0.428T + 17T^{2} \) |
| 19 | \( 1 - 7.20iT - 19T^{2} \) |
| 23 | \( 1 + 4.51T + 23T^{2} \) |
| 29 | \( 1 - 9.13iT - 29T^{2} \) |
| 31 | \( 1 - 4.52T + 31T^{2} \) |
| 37 | \( 1 + 8.32iT - 37T^{2} \) |
| 41 | \( 1 - 4.08T + 41T^{2} \) |
| 43 | \( 1 - 5.99iT - 43T^{2} \) |
| 47 | \( 1 + 4.37T + 47T^{2} \) |
| 53 | \( 1 - 2.68iT - 53T^{2} \) |
| 59 | \( 1 + 10.6iT - 59T^{2} \) |
| 61 | \( 1 + 13.4iT - 61T^{2} \) |
| 67 | \( 1 + 15.0iT - 67T^{2} \) |
| 71 | \( 1 - 2.10T + 71T^{2} \) |
| 73 | \( 1 - 13.8T + 73T^{2} \) |
| 79 | \( 1 - 0.164T + 79T^{2} \) |
| 83 | \( 1 - 13.7iT - 83T^{2} \) |
| 89 | \( 1 - 13.0T + 89T^{2} \) |
| 97 | \( 1 - 11.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71711464842190716962980753787, −9.859384409550475389430895351720, −9.526103006406654660243924421063, −7.942219767322897005366717888146, −6.78564225206152245875797743819, −6.01480283227323692528043908212, −4.90726797240514952785126595862, −3.75173140962349283981137789218, −3.29274017514775541986237506663, −1.96582166195199498271558553219,
0.73888463374471354713493901591, 2.47662743957036572640009454026, 4.09128770903861517363343198708, 4.80493874291271504803604847136, 5.89278812006538972269332067590, 6.62998662659343163451304824919, 7.58057324158697240444307960846, 8.348002608126928914510005254289, 9.016247075850291151386723090937, 9.966376600122679984610754182122