L(s) = 1 | + (0.529 + 1.31i)2-s + 2.25i·3-s + (−1.43 + 1.38i)4-s + 1.90i·5-s + (−2.95 + 1.19i)6-s − 7-s + (−2.58 − 1.14i)8-s − 2.08·9-s + (−2.50 + 1.01i)10-s − 4.24i·11-s + (−3.13 − 3.24i)12-s + i·13-s + (−0.529 − 1.31i)14-s − 4.30·15-s + (0.137 − 3.99i)16-s − 6.18·17-s + ⋯ |
L(s) = 1 | + (0.374 + 0.927i)2-s + 1.30i·3-s + (−0.719 + 0.694i)4-s + 0.853i·5-s + (−1.20 + 0.487i)6-s − 0.377·7-s + (−0.913 − 0.406i)8-s − 0.693·9-s + (−0.791 + 0.319i)10-s − 1.28i·11-s + (−0.904 − 0.935i)12-s + 0.277i·13-s + (−0.141 − 0.350i)14-s − 1.11·15-s + (0.0343 − 0.999i)16-s − 1.50·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.406 + 0.913i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.406 + 0.913i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.619946 - 0.954198i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.619946 - 0.954198i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.529 - 1.31i)T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 - 2.25iT - 3T^{2} \) |
| 5 | \( 1 - 1.90iT - 5T^{2} \) |
| 11 | \( 1 + 4.24iT - 11T^{2} \) |
| 17 | \( 1 + 6.18T + 17T^{2} \) |
| 19 | \( 1 - 6.45iT - 19T^{2} \) |
| 23 | \( 1 - 1.86T + 23T^{2} \) |
| 29 | \( 1 - 2.91iT - 29T^{2} \) |
| 31 | \( 1 + 1.27T + 31T^{2} \) |
| 37 | \( 1 - 3.46iT - 37T^{2} \) |
| 41 | \( 1 - 10.3T + 41T^{2} \) |
| 43 | \( 1 + 7.62iT - 43T^{2} \) |
| 47 | \( 1 + 12.8T + 47T^{2} \) |
| 53 | \( 1 - 8.53iT - 53T^{2} \) |
| 59 | \( 1 + 1.16iT - 59T^{2} \) |
| 61 | \( 1 - 9.61iT - 61T^{2} \) |
| 67 | \( 1 - 4.60iT - 67T^{2} \) |
| 71 | \( 1 - 10.1T + 71T^{2} \) |
| 73 | \( 1 + 10.2T + 73T^{2} \) |
| 79 | \( 1 + 15.2T + 79T^{2} \) |
| 83 | \( 1 + 16.0iT - 83T^{2} \) |
| 89 | \( 1 - 15.7T + 89T^{2} \) |
| 97 | \( 1 - 2.39T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81385793786301139968441044005, −10.11583537159304342476027576354, −9.090115373985843139326522644831, −8.590156048019357816160182579824, −7.34991184755883372252272130154, −6.42252763919606350034550735809, −5.72106251518815059796386684399, −4.59191113522592438859576922590, −3.72419579010678769146874464369, −2.99264885399693898029626789726,
0.51490562610752252741115060382, 1.81096573401046518242646885665, 2.68448411673600866210627714263, 4.36131621489019014578694085108, 4.99521426831509997702065424895, 6.34403907412269384948316640507, 7.03846317922090147572136039244, 8.179634729692277107873926935748, 9.133160390614296302300025799090, 9.692556470606672454848163390940