L(s) = 1 | + (0.220 − 1.39i)2-s − 1.54i·3-s + (−1.90 − 0.615i)4-s + 3.27i·5-s + (−2.16 − 0.341i)6-s − 7-s + (−1.27 + 2.52i)8-s + 0.600·9-s + (4.57 + 0.721i)10-s + 2.39i·11-s + (−0.953 + 2.94i)12-s + i·13-s + (−0.220 + 1.39i)14-s + 5.07·15-s + (3.24 + 2.34i)16-s + 2.51·17-s + ⋯ |
L(s) = 1 | + (0.155 − 0.987i)2-s − 0.894i·3-s + (−0.951 − 0.307i)4-s + 1.46i·5-s + (−0.883 − 0.139i)6-s − 0.377·7-s + (−0.452 + 0.891i)8-s + 0.200·9-s + (1.44 + 0.228i)10-s + 0.723i·11-s + (−0.275 + 0.850i)12-s + 0.277i·13-s + (−0.0589 + 0.373i)14-s + 1.30·15-s + (0.810 + 0.585i)16-s + 0.609·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.891 + 0.452i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.891 + 0.452i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34899 - 0.322565i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34899 - 0.322565i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.220 + 1.39i)T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 + 1.54iT - 3T^{2} \) |
| 5 | \( 1 - 3.27iT - 5T^{2} \) |
| 11 | \( 1 - 2.39iT - 11T^{2} \) |
| 17 | \( 1 - 2.51T + 17T^{2} \) |
| 19 | \( 1 - 1.28iT - 19T^{2} \) |
| 23 | \( 1 - 6.33T + 23T^{2} \) |
| 29 | \( 1 - 3.38iT - 29T^{2} \) |
| 31 | \( 1 - 1.78T + 31T^{2} \) |
| 37 | \( 1 - 11.0iT - 37T^{2} \) |
| 41 | \( 1 + 3.81T + 41T^{2} \) |
| 43 | \( 1 + 5.92iT - 43T^{2} \) |
| 47 | \( 1 - 3.49T + 47T^{2} \) |
| 53 | \( 1 - 12.6iT - 53T^{2} \) |
| 59 | \( 1 - 9.43iT - 59T^{2} \) |
| 61 | \( 1 + 6.93iT - 61T^{2} \) |
| 67 | \( 1 + 1.35iT - 67T^{2} \) |
| 71 | \( 1 - 4.37T + 71T^{2} \) |
| 73 | \( 1 + 5.91T + 73T^{2} \) |
| 79 | \( 1 + 4.84T + 79T^{2} \) |
| 83 | \( 1 + 9.94iT - 83T^{2} \) |
| 89 | \( 1 - 0.0174T + 89T^{2} \) |
| 97 | \( 1 + 5.76T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31476046287195854948992428690, −9.898468884116221140371212078168, −8.741882907609383692517524911594, −7.50362290601879540734839704168, −6.92359552183832710531503335919, −6.02697388998388842419543997439, −4.66434345663144777142380081576, −3.39733105928821420920163529648, −2.60025813545294949155971784683, −1.41526871021225507928911174490,
0.78530524626327563962633186045, 3.37073673773088667543906910209, 4.29265603667248354087497390915, 5.10973371941695530808745583213, 5.70506261257356971659351955987, 6.94580407969196881119052931411, 8.019862987374512285780699209797, 8.799833928942580057957788599888, 9.376427951339628180169849066760, 10.06804891166825039574503418115