L(s) = 1 | + (1.64 − 2.85i)3-s − 0.585i·5-s + (−0.866 + 0.5i)7-s + (−3.94 − 6.82i)9-s + (−2.18 − 1.26i)11-s + (1.94 + 3.03i)13-s + (−1.67 − 0.965i)15-s + (−3.75 − 6.50i)17-s + (−1.63 + 0.943i)19-s + 3.29i·21-s + (−1.62 + 2.81i)23-s + 4.65·25-s − 16.1·27-s + (3.51 − 6.08i)29-s − 9.37i·31-s + ⋯ |
L(s) = 1 | + (0.952 − 1.64i)3-s − 0.261i·5-s + (−0.327 + 0.188i)7-s + (−1.31 − 2.27i)9-s + (−0.660 − 0.381i)11-s + (0.538 + 0.842i)13-s + (−0.431 − 0.249i)15-s + (−0.910 − 1.57i)17-s + (−0.375 + 0.216i)19-s + 0.719i·21-s + (−0.338 + 0.586i)23-s + 0.931·25-s − 3.10·27-s + (0.652 − 1.12i)29-s − 1.68i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.835 + 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.835 + 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.485866 - 1.62376i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.485866 - 1.62376i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (-1.94 - 3.03i)T \) |
good | 3 | \( 1 + (-1.64 + 2.85i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 0.585iT - 5T^{2} \) |
| 11 | \( 1 + (2.18 + 1.26i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.75 + 6.50i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.63 - 0.943i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.62 - 2.81i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.51 + 6.08i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 9.37iT - 31T^{2} \) |
| 37 | \( 1 + (-9.17 - 5.29i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.38 - 2.53i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.82 - 4.88i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 4.57iT - 47T^{2} \) |
| 53 | \( 1 + 1.36T + 53T^{2} \) |
| 59 | \( 1 + (-3.16 + 1.82i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.38 + 7.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.03 - 0.599i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.22 - 1.28i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 6.75iT - 73T^{2} \) |
| 79 | \( 1 + 3.16T + 79T^{2} \) |
| 83 | \( 1 + 9.05iT - 83T^{2} \) |
| 89 | \( 1 + (-14.9 - 8.60i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.57 - 1.48i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.592823682161254889571830195598, −9.088699919559431872801918161954, −8.149206230356435770314082459369, −7.60210045063217773790814794180, −6.55739640304527770336286878727, −6.02876583444038465951317937058, −4.40444659049220948120342369831, −2.94187406757566003079031221421, −2.25133533614958140288631548779, −0.76736878506720515220479837062,
2.40920516927504064662696180432, 3.32599097478701615381895509824, 4.20115193722445611482741383346, 5.05213912871442083652445732105, 6.19278658988431875870478260496, 7.52186807221182414290614301277, 8.677156382922899718560645792830, 8.772974325948425664384698085175, 10.11872249259883880263539474358, 10.64243719811846638831649884953