L(s) = 1 | + (0.138 − 0.239i)3-s − 1.57i·5-s + (−0.866 + 0.5i)7-s + (1.46 + 2.53i)9-s + (1.92 + 1.11i)11-s + (0.402 + 3.58i)13-s + (−0.377 − 0.217i)15-s + (1.57 + 2.71i)17-s + (−0.118 + 0.0682i)19-s + 0.276i·21-s + (3.69 − 6.40i)23-s + 2.51·25-s + 1.63·27-s + (3.35 − 5.80i)29-s − 1.91i·31-s + ⋯ |
L(s) = 1 | + (0.0798 − 0.138i)3-s − 0.704i·5-s + (−0.327 + 0.188i)7-s + (0.487 + 0.843i)9-s + (0.580 + 0.335i)11-s + (0.111 + 0.993i)13-s + (−0.0974 − 0.0562i)15-s + (0.380 + 0.659i)17-s + (−0.0271 + 0.0156i)19-s + 0.0603i·21-s + (0.771 − 1.33i)23-s + 0.503·25-s + 0.315·27-s + (0.622 − 1.07i)29-s − 0.343i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.124i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 - 0.124i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.64159 + 0.102398i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64159 + 0.102398i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (-0.402 - 3.58i)T \) |
good | 3 | \( 1 + (-0.138 + 0.239i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 1.57iT - 5T^{2} \) |
| 11 | \( 1 + (-1.92 - 1.11i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.57 - 2.71i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.118 - 0.0682i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.69 + 6.40i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.35 + 5.80i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.91iT - 31T^{2} \) |
| 37 | \( 1 + (-1.13 - 0.657i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.18 - 4.15i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.37 + 4.11i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.92iT - 47T^{2} \) |
| 53 | \( 1 + 1.59T + 53T^{2} \) |
| 59 | \( 1 + (8.51 - 4.91i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.02 - 1.77i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.96 + 4.02i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.58 - 0.914i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 9.37iT - 73T^{2} \) |
| 79 | \( 1 - 6.91T + 79T^{2} \) |
| 83 | \( 1 - 5.95iT - 83T^{2} \) |
| 89 | \( 1 + (0.981 + 0.566i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.72 + 5.03i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35895127570895042342540346696, −9.464066398472039017852842203596, −8.738602105503720778525823430734, −7.910547596688595543434109556204, −6.87228532262721598174276024416, −6.07038342980297513900358743404, −4.75064888727601547528261136470, −4.19926103911700567445957287165, −2.56401307691343930825252445884, −1.30924576335389981730129626292,
1.06417748390597893573731676142, 3.06002738540530896809851627906, 3.53623000941561752491877861083, 4.94555011450531100410764995350, 6.07369978986131903888704677814, 6.90711447979914296060294528136, 7.58644175573355684273973831113, 8.866395668041818252617106956889, 9.524191747178062307215960980734, 10.39482120698765670806813959992