Properties

Label 2-728-728.181-c0-0-1
Degree $2$
Conductor $728$
Sign $1$
Analytic cond. $0.363319$
Root an. cond. $0.602759$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 11-s − 12-s + 13-s + 14-s + 16-s + 21-s − 22-s − 23-s + 24-s + 25-s − 26-s + 27-s − 28-s + 31-s − 32-s − 33-s + 37-s − 39-s + 41-s − 42-s + 44-s + ⋯
L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 11-s − 12-s + 13-s + 14-s + 16-s + 21-s − 22-s − 23-s + 24-s + 25-s − 26-s + 27-s − 28-s + 31-s − 32-s − 33-s + 37-s − 39-s + 41-s − 42-s + 44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(728\)    =    \(2^{3} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(0.363319\)
Root analytic conductor: \(0.602759\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{728} (181, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 728,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4215075552\)
\(L(\frac12)\) \(\approx\) \(0.4215075552\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + T + T^{2} \)
5 \( ( 1 - T )( 1 + T ) \)
11 \( 1 - T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 + T + T^{2} \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 - T + T^{2} \)
37 \( 1 - T + T^{2} \)
41 \( 1 - T + T^{2} \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( 1 - T + T^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( 1 + T + T^{2} \)
67 \( 1 - T + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( 1 - T + T^{2} \)
79 \( 1 + T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 + T )^{2} \)
97 \( 1 - T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64395295727242441707098717042, −9.746606008942816388933381548676, −9.015583218332226410051730892396, −8.170142547218155842603136854742, −6.89413029194661086740361443487, −6.29983339380796249598384662619, −5.74085531224855117709731987684, −4.06543122933124548766140920932, −2.80969679386186843695078355233, −1.00744226478458233018468617707, 1.00744226478458233018468617707, 2.80969679386186843695078355233, 4.06543122933124548766140920932, 5.74085531224855117709731987684, 6.29983339380796249598384662619, 6.89413029194661086740361443487, 8.170142547218155842603136854742, 9.015583218332226410051730892396, 9.746606008942816388933381548676, 10.64395295727242441707098717042

Graph of the $Z$-function along the critical line