L(s) = 1 | + (0.5 − 0.866i)2-s + (0.939 + 1.62i)3-s + (−0.499 − 0.866i)4-s + (0.173 − 0.300i)5-s + 1.87·6-s + (0.939 − 0.342i)7-s − 0.999·8-s + (−1.26 + 2.19i)9-s + (−0.173 − 0.300i)10-s + (0.939 − 1.62i)12-s − 13-s + (0.173 − 0.984i)14-s + 0.652·15-s + (−0.5 + 0.866i)16-s + (−0.766 − 1.32i)17-s + (1.26 + 2.19i)18-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.939 + 1.62i)3-s + (−0.499 − 0.866i)4-s + (0.173 − 0.300i)5-s + 1.87·6-s + (0.939 − 0.342i)7-s − 0.999·8-s + (−1.26 + 2.19i)9-s + (−0.173 − 0.300i)10-s + (0.939 − 1.62i)12-s − 13-s + (0.173 − 0.984i)14-s + 0.652·15-s + (−0.5 + 0.866i)16-s + (−0.766 − 1.32i)17-s + (1.26 + 2.19i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.546912433\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.546912433\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.939 + 0.342i)T \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 0.347T + T^{2} \) |
| 47 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + 1.53T + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50116412773392212766199792039, −9.818999160227584418831701176768, −9.140190523670367150178835979769, −8.508314788634195102090187032364, −7.29278862117808698314876138238, −5.35876320235666022761637664214, −4.85709306369948979757083774324, −4.19740199032685333669106773632, −3.07802686664497458646233500941, −2.11976201716106023149395748836,
1.92745872459092104670714350459, 2.83068459442663857027014777382, 4.19461207490132272649139514298, 5.54860190911144670133000919322, 6.43223368239240947867521119310, 7.21859463632192171769740235408, 7.81536478865275433794450362138, 8.620380122752069587593775639819, 9.117524890587574854919453485725, 10.75051137707483077226880935266