Properties

Label 2-726-121.12-c1-0-8
Degree $2$
Conductor $726$
Sign $0.929 + 0.369i$
Analytic cond. $5.79713$
Root an. cond. $2.40772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.841 − 0.540i)2-s − 3-s + (0.415 − 0.909i)4-s + (−0.149 + 1.04i)5-s + (−0.841 + 0.540i)6-s + (−1.49 + 1.72i)7-s + (−0.142 − 0.989i)8-s + 9-s + (0.437 + 0.957i)10-s + (1.40 − 3.00i)11-s + (−0.415 + 0.909i)12-s + (0.661 − 1.44i)13-s + (−0.325 + 2.26i)14-s + (0.149 − 1.04i)15-s + (−0.654 − 0.755i)16-s + (4.69 + 1.37i)17-s + ⋯
L(s)  = 1  + (0.594 − 0.382i)2-s − 0.577·3-s + (0.207 − 0.454i)4-s + (−0.0670 + 0.466i)5-s + (−0.343 + 0.220i)6-s + (−0.565 + 0.652i)7-s + (−0.0503 − 0.349i)8-s + 0.333·9-s + (0.138 + 0.302i)10-s + (0.422 − 0.906i)11-s + (−0.119 + 0.262i)12-s + (0.183 − 0.401i)13-s + (−0.0869 + 0.604i)14-s + (0.0386 − 0.269i)15-s + (−0.163 − 0.188i)16-s + (1.13 + 0.334i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.929 + 0.369i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.929 + 0.369i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(726\)    =    \(2 \cdot 3 \cdot 11^{2}\)
Sign: $0.929 + 0.369i$
Analytic conductor: \(5.79713\)
Root analytic conductor: \(2.40772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{726} (133, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 726,\ (\ :1/2),\ 0.929 + 0.369i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.75584 - 0.336400i\)
\(L(\frac12)\) \(\approx\) \(1.75584 - 0.336400i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.841 + 0.540i)T \)
3 \( 1 + T \)
11 \( 1 + (-1.40 + 3.00i)T \)
good5 \( 1 + (0.149 - 1.04i)T + (-4.79 - 1.40i)T^{2} \)
7 \( 1 + (1.49 - 1.72i)T + (-0.996 - 6.92i)T^{2} \)
13 \( 1 + (-0.661 + 1.44i)T + (-8.51 - 9.82i)T^{2} \)
17 \( 1 + (-4.69 - 1.37i)T + (14.3 + 9.19i)T^{2} \)
19 \( 1 + (-6.04 + 1.77i)T + (15.9 - 10.2i)T^{2} \)
23 \( 1 + (-4.60 - 5.31i)T + (-3.27 + 22.7i)T^{2} \)
29 \( 1 + (-0.0196 + 0.00575i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (1.08 + 2.38i)T + (-20.3 + 23.4i)T^{2} \)
37 \( 1 + (-2.73 - 5.99i)T + (-24.2 + 27.9i)T^{2} \)
41 \( 1 + (6.78 - 4.35i)T + (17.0 - 37.2i)T^{2} \)
43 \( 1 + (1.52 + 10.6i)T + (-41.2 + 12.1i)T^{2} \)
47 \( 1 + (-2.09 - 1.34i)T + (19.5 + 42.7i)T^{2} \)
53 \( 1 + (-8.34 + 9.63i)T + (-7.54 - 52.4i)T^{2} \)
59 \( 1 + (10.5 + 6.77i)T + (24.5 + 53.6i)T^{2} \)
61 \( 1 + (-3.91 - 2.51i)T + (25.3 + 55.4i)T^{2} \)
67 \( 1 + (-1.64 + 1.05i)T + (27.8 - 60.9i)T^{2} \)
71 \( 1 + (10.6 - 3.11i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (0.0828 + 0.0956i)T + (-10.3 + 72.2i)T^{2} \)
79 \( 1 + (-1.19 + 8.29i)T + (-75.7 - 22.2i)T^{2} \)
83 \( 1 + (7.82 - 9.03i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (14.6 + 4.29i)T + (74.8 + 48.1i)T^{2} \)
97 \( 1 + (0.0583 + 0.406i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46731147676428018371873157693, −9.722304683423664497075876888852, −8.811365782137178926856578024457, −7.51737006532400002080182169504, −6.59817355323234714365061617616, −5.70067560402407630003505049948, −5.16360212616332046296405136465, −3.50652612799112537452393743907, −3.03037591559667100122533720048, −1.14612028950410412750503684939, 1.15160750831593481524265721499, 3.09681701573885182612105512939, 4.21942223960234454818245099428, 4.99582129800641690717021475386, 5.94398441090161068276234640206, 7.01917087806644799810067821542, 7.39433783028552366363236867921, 8.736429731018612095715230913792, 9.683082343920985610459731605461, 10.43150347407653299407324254250

Graph of the $Z$-function along the critical line