Properties

Label 2-726-121.67-c1-0-17
Degree $2$
Conductor $726$
Sign $-0.0222 + 0.999i$
Analytic cond. $5.79713$
Root an. cond. $2.40772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.959 − 0.281i)2-s − 3-s + (0.841 − 0.540i)4-s + (0.564 + 0.651i)5-s + (−0.959 + 0.281i)6-s + (−1.20 − 2.63i)7-s + (0.654 − 0.755i)8-s + 9-s + (0.725 + 0.466i)10-s + (−3.02 − 1.35i)11-s + (−0.841 + 0.540i)12-s + (3.09 − 1.98i)13-s + (−1.89 − 2.18i)14-s + (−0.564 − 0.651i)15-s + (0.415 − 0.909i)16-s + (0.0348 − 0.242i)17-s + ⋯
L(s)  = 1  + (0.678 − 0.199i)2-s − 0.577·3-s + (0.420 − 0.270i)4-s + (0.252 + 0.291i)5-s + (−0.391 + 0.115i)6-s + (−0.454 − 0.994i)7-s + (0.231 − 0.267i)8-s + 0.333·9-s + (0.229 + 0.147i)10-s + (−0.913 − 0.407i)11-s + (−0.242 + 0.156i)12-s + (0.857 − 0.551i)13-s + (−0.506 − 0.584i)14-s + (−0.145 − 0.168i)15-s + (0.103 − 0.227i)16-s + (0.00844 − 0.0587i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0222 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0222 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(726\)    =    \(2 \cdot 3 \cdot 11^{2}\)
Sign: $-0.0222 + 0.999i$
Analytic conductor: \(5.79713\)
Root analytic conductor: \(2.40772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{726} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 726,\ (\ :1/2),\ -0.0222 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.16246 - 1.18859i\)
\(L(\frac12)\) \(\approx\) \(1.16246 - 1.18859i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.959 + 0.281i)T \)
3 \( 1 + T \)
11 \( 1 + (3.02 + 1.35i)T \)
good5 \( 1 + (-0.564 - 0.651i)T + (-0.711 + 4.94i)T^{2} \)
7 \( 1 + (1.20 + 2.63i)T + (-4.58 + 5.29i)T^{2} \)
13 \( 1 + (-3.09 + 1.98i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (-0.0348 + 0.242i)T + (-16.3 - 4.78i)T^{2} \)
19 \( 1 + (0.420 + 2.92i)T + (-18.2 + 5.35i)T^{2} \)
23 \( 1 + (-0.0484 + 0.106i)T + (-15.0 - 17.3i)T^{2} \)
29 \( 1 + (0.512 + 3.56i)T + (-27.8 + 8.17i)T^{2} \)
31 \( 1 + (0.269 + 0.173i)T + (12.8 + 28.1i)T^{2} \)
37 \( 1 + (-3.98 - 2.55i)T + (15.3 + 33.6i)T^{2} \)
41 \( 1 + (-4.95 + 1.45i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (0.00587 - 0.00677i)T + (-6.11 - 42.5i)T^{2} \)
47 \( 1 + (6.35 + 1.86i)T + (39.5 + 25.4i)T^{2} \)
53 \( 1 + (-0.925 - 2.02i)T + (-34.7 + 40.0i)T^{2} \)
59 \( 1 + (-3.72 - 1.09i)T + (49.6 + 31.8i)T^{2} \)
61 \( 1 + (0.304 + 0.0894i)T + (51.3 + 32.9i)T^{2} \)
67 \( 1 + (3.79 - 1.11i)T + (56.3 - 36.2i)T^{2} \)
71 \( 1 + (-1.36 - 9.46i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (-1.81 + 3.96i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (3.65 + 4.22i)T + (-11.2 + 78.1i)T^{2} \)
83 \( 1 + (-0.356 - 0.781i)T + (-54.3 + 62.7i)T^{2} \)
89 \( 1 + (1.35 - 9.44i)T + (-85.3 - 25.0i)T^{2} \)
97 \( 1 + (0.861 - 0.994i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48423688906006393418492367867, −9.721169699054360980695855168986, −8.313136955863325002104586660077, −7.33355862586077634713823662152, −6.43268651696614307156616332090, −5.75482983572590162904799419531, −4.68527488712407640755014634889, −3.68011786673254796205772694522, −2.59430514582215664310705353547, −0.74544902713834515052727180336, 1.81147830118968940972106240790, 3.12372288737944738600623234518, 4.38267395968211372600772320349, 5.42736913349738732541803339181, 5.92114721560616548974029823268, 6.85474876470900873286924083153, 7.924119865108133624428062896686, 8.933474789180443026117045833102, 9.773719318130557735968212657028, 10.82113976344045404338273713606

Graph of the $Z$-function along the critical line