L(s) = 1 | + (−0.415 + 0.909i)2-s − 3-s + (−0.654 − 0.755i)4-s + (0.120 + 0.0353i)5-s + (0.415 − 0.909i)6-s + (−0.477 − 3.32i)7-s + (0.959 − 0.281i)8-s + 9-s + (−0.0822 + 0.0948i)10-s + (−2.50 + 2.17i)11-s + (0.654 + 0.755i)12-s + (0.834 + 0.962i)13-s + (3.22 + 0.945i)14-s + (−0.120 − 0.0353i)15-s + (−0.142 + 0.989i)16-s + (−0.608 − 0.391i)17-s + ⋯ |
L(s) = 1 | + (−0.293 + 0.643i)2-s − 0.577·3-s + (−0.327 − 0.377i)4-s + (0.0538 + 0.0158i)5-s + (0.169 − 0.371i)6-s + (−0.180 − 1.25i)7-s + (0.339 − 0.0996i)8-s + 0.333·9-s + (−0.0259 + 0.0300i)10-s + (−0.753 + 0.656i)11-s + (0.189 + 0.218i)12-s + (0.231 + 0.266i)13-s + (0.860 + 0.252i)14-s + (−0.0310 − 0.00913i)15-s + (−0.0355 + 0.247i)16-s + (−0.147 − 0.0949i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.134i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 + 0.134i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0102191 - 0.150835i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0102191 - 0.150835i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.415 - 0.909i)T \) |
| 3 | \( 1 + T \) |
| 11 | \( 1 + (2.50 - 2.17i)T \) |
good | 5 | \( 1 + (-0.120 - 0.0353i)T + (4.20 + 2.70i)T^{2} \) |
| 7 | \( 1 + (0.477 + 3.32i)T + (-6.71 + 1.97i)T^{2} \) |
| 13 | \( 1 + (-0.834 - 0.962i)T + (-1.85 + 12.8i)T^{2} \) |
| 17 | \( 1 + (0.608 + 0.391i)T + (7.06 + 15.4i)T^{2} \) |
| 19 | \( 1 + (1.49 - 0.960i)T + (7.89 - 17.2i)T^{2} \) |
| 23 | \( 1 + (0.818 - 5.69i)T + (-22.0 - 6.47i)T^{2} \) |
| 29 | \( 1 + (4.16 - 2.67i)T + (12.0 - 26.3i)T^{2} \) |
| 31 | \( 1 + (5.71 - 6.59i)T + (-4.41 - 30.6i)T^{2} \) |
| 37 | \( 1 + (-6.52 + 7.53i)T + (-5.26 - 36.6i)T^{2} \) |
| 41 | \( 1 + (1.32 - 2.89i)T + (-26.8 - 30.9i)T^{2} \) |
| 43 | \( 1 + (9.21 - 2.70i)T + (36.1 - 23.2i)T^{2} \) |
| 47 | \( 1 + (-2.49 - 5.47i)T + (-30.7 + 35.5i)T^{2} \) |
| 53 | \( 1 + (0.134 + 0.936i)T + (-50.8 + 14.9i)T^{2} \) |
| 59 | \( 1 + (5.89 + 12.8i)T + (-38.6 + 44.5i)T^{2} \) |
| 61 | \( 1 + (5.86 + 12.8i)T + (-39.9 + 46.1i)T^{2} \) |
| 67 | \( 1 + (3.04 - 6.66i)T + (-43.8 - 50.6i)T^{2} \) |
| 71 | \( 1 + (7.69 - 4.94i)T + (29.4 - 64.5i)T^{2} \) |
| 73 | \( 1 + (1.44 - 10.0i)T + (-70.0 - 20.5i)T^{2} \) |
| 79 | \( 1 + (6.18 + 1.81i)T + (66.4 + 42.7i)T^{2} \) |
| 83 | \( 1 + (0.840 + 5.84i)T + (-79.6 + 23.3i)T^{2} \) |
| 89 | \( 1 + (-11.1 - 7.16i)T + (36.9 + 80.9i)T^{2} \) |
| 97 | \( 1 + (11.6 - 3.42i)T + (81.6 - 52.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70593667741478852655011292290, −9.982702403971503373018887584395, −9.278507045692214544316993463711, −7.931501828261082646410320507352, −7.37004032886870147498570538277, −6.58437086270618693431360002994, −5.59028779433432774691963308993, −4.63423872829633772782885668324, −3.66397472426127912498042516285, −1.64279468512926732507121960868,
0.090207066980720133310271330322, 2.02077956112843028742744064921, 3.05392630524343987564133409499, 4.38626874534077860500284312136, 5.59769865556859490188976515994, 6.08540178007450011149545782204, 7.50856773828547121062716706605, 8.455362044455307362216303125823, 9.128778558344138108360527493732, 10.09378630836653139424142912899